Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PI KA CHU
Xem chi tiết
Selina
25 tháng 1 2016 lúc 12:53

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.
Suy ra p chia 3 dư 1 hoặc 2.
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố

Vậy chỉ có p=3 thỏa thôi

Họ hàng của abcdefghijkl...
Xem chi tiết
Đặng Yến Ngọc
1 tháng 11 2018 lúc 21:19

p1=2

p2=3

p3=5

p4=7

p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố

đúng thì tk nha

zZz Cool Kid_new zZz
1 tháng 11 2018 lúc 21:26

Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4)                (1)

Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số

Suy ra chúgn lần lượt là.........(1)

zZz Cool Kid_new zZz
1 tháng 11 2018 lúc 21:28

mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa

Lê Hoài Quỳnh Chi
Xem chi tiết
kebbya
Xem chi tiết
Châu Nguyễn Khánh Vinh
3 tháng 2 2016 lúc 19:56

vì 53 là số nguyên tố => p^2+44=53=>p^2=53-44=9=>p^2=3^2=>p=3

vinhgofm
Xem chi tiết
nguyễn tạo nguyên
Xem chi tiết
_Never Give Up_ĐXRBBNBMC...
18 tháng 4 2018 lúc 20:55

+, p=2 :

\(\Rightarrow p^2+44=4+44=48\) (hợp số loại)

+, p=3 :

\(\Rightarrow p^2+44=9+44=53\)(số nguyên tố thỏa mãn)

+, \(p>3\):

\(\Rightarrow\)p có dạng 3k+1;3k+2:                                       \(\left(k\inℕ^∗\right)\)

+,p=3k+1:

\(\Rightarrow\left(3k+1\right)^2+44=3n+1+44=3n+45⋮3\)(hợp số loại)

+, p=3k+2:

\(\Rightarrow\left(3k+2\right)^2+44=3m+1+44=3m+45⋮3\)(hợp số loại)                  \(\left(m;n\inℕ^∗\right)\)

Vậy p=3

Kang Yumy
Xem chi tiết
Dương Dương họ Nguyễn_2k...
19 tháng 12 2014 lúc 19:50

so nguyen to ko the la so chan=>la so le. ma so le -so chan = so le. xet thi co 3^2 la so le ma +44 moi la so nguyen to . co the thu voi cac truong hop khac nhung ko thoa man de bai. dap so bang 3 do .                     

Hà Mai Khanh
Xem chi tiết
Lê Song Phương
23 tháng 6 2023 lúc 8:06

 Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).

 Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\)