Chứng minh rằng nếu: (a^2+ab+b^2) chia hết cho 10 thì (a^3-b^3) chia hết cho 100
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4
b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13
Câu b) tương tự nhé bạn.
1.Cho a,b thuộc N
A) chứng minh rằng: Nếu (10.a+3.b) chia hết cho & thì (4.b-3.a) chia hết cho
B)chứng minh rằng: Nếu(2.a+3.b) chia hết cho 13 thì (9.a +7.b) chia hết cho 13
2.Chứng minh:
a)3366+7755-2 chia hết cho 5
b)8102-2102 chia hết cho 10
Nhanh giúp mình với nhé
chứng minh rằng nếu ( a2+ab+b2) chia hết cho 10 thì ( a3-b3) chia hết cho 1000
Câu 1 : Tìm x biết
( x + 1 ) + ( x + 2 ) + ......... + ( x + 100 ) = 5750
Câu 2 :
a) Chứng minh rằng nếu : ( ab + cd + eg )chia hết cho 11 thì abcdeg chia hết cho 11
b) Chứng minh rằng : 10^28 + 8 chia hết cho 72
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
Mik nói thật nhé lũ CTV OLM n g u như c a k ấy
a) Chứng minh rằng nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
b) Cho A= 2+22+23+...+260 . Chứng minh A chia hết cho 3; 7; 15
a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)
và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
b) \(\cdot A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)
\(A=2.3+...+2^{50}.3\)
\(A=3\left(2+..+2^{50}\right)⋮3\)
các trường hợp còn lại tự lm nhé!!
1. Chứng minh rằng nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
2. a, Chứng minh rằng số có dạng abcabc chia hết cho 7,11,13
b, Áp dụng câu a ko thực hiện phép chia hãy cho biết trong các số sau số nào chia hết cho 7, số nào chia hết cho 11, số nào chia hết cho 13 .272283,236243,579572
3. Chứng minh rằng nếu ab=cd*3 thì abcd chia hết cho 43
4. Cho abc+deg chia hết cho 37 . Chứng minh abcdeg chia hết cho 37
giải ra giùm mình nhé
ai trả lời được mình k cho