So sánh:
199^20 va 2003^15: 3^39 va 11^21
So sánh:
19920 va 200315; 339 va 1121
so sanh 21^15 va 27^5
15^12 va 81^3.125^5
3^39 va 11^21
72^45-72^44 va 72^44-72^43
199^20 va 2003^15
a) \(21^{15}=21^{3.5}=\left(21^3\right)^5=9261^5\)
Vì \(9261>27\Rightarrow9261^5>27^5\Rightarrow21^{15}>27^5\)
b) \(15^{12}=\left(3.5\right)^{12}=3^{12}.5^{12}\)
\(81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{4.3}.5^{3.5}=3^{12}.5^{15}\)
Vì \(3^{12}=3^{12}\)mà \(5^{12}< 5^{15}\Rightarrow3^{12}.5^{12}< 3^{12}.5^{15}\Rightarrow15^{12}< 81^3.125^5\)
a,199^200 va 2003^15 b,3^39 va 11^21
199 ^ 200 > 2003 ^ 15
3 ^ 39 < 11 ^ 21
So sanh cac luy thua
a) 523 va 6.522
b) 2115 va 275. 498
c) 19920 va 200315
d) 339 va 1121
a) 523 và 6.522
Ta có: 5.522 = 523
Mà: 5.522 < 6.522
=> 523< 6.522
b) 2115 và 275. 498
Ta có: 2115= 315 . 715
275 .498 = 3(3.5) . 7(2.8)=315.716
Mà: 715 < 716
=> 2115 < 275. 498
c) 19920 va 200315
Ta có: 200315 > 200015 = (2.103)15 = 215.1045
19920 < 20020 = (2.102)^20 = 220.1040 =215.25.1040 < 215.1040.100 =215.1042
Mà 1045 > 1042
=> 19920 < 200315
d) 339 và 1121
Ta có: 339 < 340 = 920 < 1120
Mà 1120 < 1121
=> 339 < 1121
BÀi 1: so sánh
a) 199^20 và 2003^15
b)3^39 và 11^21
c)5^217 và 119^72
bai 1: so sanh
a)371320 va 111979
b)2711va 818
c)32n va 234
d)339 va 1121
e)536 va 1124
g)2115 va 27* 498
f)19920 va 200315
a/
\(37^{1320}=\left(37^2\right)^{660}=1369^{660}\)
\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(\Rightarrow1363^{660}>1331^{660}\Rightarrow37^{1320}>11^{1979}\)
b/
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
\(\Rightarrow27^{11}>81^8\)
d/
\(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 9^{21}< 11^{21}\)
e/ \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
g/ \(21^{15}=3^{15}.7^{15}\)
\(27.49^8=3^3.\left(7^2\right)^8=3^3.7^{16}\)
\(\frac{21^{15}}{27.49^8}=\frac{3^{15}.7^{15}}{3^3.7^{16}}=\frac{3^{12}}{7}>1\Rightarrow21^{15}>27.49^8\)
f/ \(199^{20}=\left(199^4\right)^5\)
\(2003^{15}=\left(2003^3\right)^5\)
\(2003^5>1990^5\)
\(\frac{1990^5}{199^4}=\frac{199^5.10^5}{199^4}=199.10^5>1\)
\(\Rightarrow2003^5>1990^5>199^4\Rightarrow2003^{15}>199^{20}\)
So sánh
a) 19920 và 200315
b) 339 và 1121
So sánh
a) 19920 và 200315
b)339 và 1121
So sánh 19920 va 200315