Cho a,b,c thoả mãn:
\(a^2+b^2+c^2=\frac{b^2-c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4}+\frac{a^2-b^2}{c^2+5}\)
Tính giá trị của 2014a+2015bc+ \(\frac{a+b+c}{2014\cdot2015}+\frac{abc}{2014+2015}\)
Cho các số nguyên a;b;c thỏa mãn :
\(\frac{2014.a^2+b^2+c^2}{a^2}=\frac{a^2+2014.b^2+c^2}{b^2}=\frac{a^2+b^2+2014.c^2}{c^2}\)
Tính giá trị biểu thức : P=\(\frac{2015.a^2+b^2}{c^2}+\frac{2015.b^2+c^2}{a^2}+\frac{2015.c^2+a^2}{b^2}\)
Chứng minh rằng
a, \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)\
Biết a,b,c là 3 số thự thỏa mãn điều kiện: a=b+1=c+2 và c>0
b, Biểu thức B=\(\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)có giá trị là 1 số nguyên
a,a=b+1
suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1
suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)
vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)
suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)
từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)
ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)
suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)
vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)
suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)
Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)
từ (*),(**) suy ra đccm
Cho các số nguyên a,b,c thỏa mãn:
\(\frac{2014.a^2+b^2+c^2}{a^2}=\frac{a^2+2014.b^2+c^2}{b^2}=\frac{a^2+b^2+2014.c^2}{c^2}\)
Tính A=x2014+y2014+z2014
Biết x,y,z thoả mãn:
\(A=\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Cho các số nguyên a, b, c thỏa mãn :\(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)
Tính giá trị biểu thức :\(P=\frac{2015a^2+b^2}{c^2}+\frac{2015b^2+c^2}{a^2}+\frac{2015c^2+a^2}{b^2}\)
Ủa tui tưởng bài này ỏ lớp 7 cơ ch71, lớp 6 có rùi sao
từ đề bài => \(2014+\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}+2014=\frac{a^2+b^2}{c^2}+2014\)
=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\). theo tính chất dãy tỉ số bằng nhau
=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{b^2+c^2+a^2+c^2+a^2+b^2}{a^2+b^2+c^2}=\frac{2.\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\)
=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)=>\(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\)
=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{c^2}{b^2}=6:2=3\)\(P=2015.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)=2016.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)=2016.3=6048\)
Cho ba số a, b, c thỏa mãn
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}\)
tính giá trị của biểu thức:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)
\(\Rightarrow a=2014k;b=2015k;c=2016k\)
\(\Rightarrow4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)\)
\(\Rightarrow4\cdot k(2014-2015)\cdot k(2015-2016)=4\cdot k\cdot(-1)\cdot k\cdot(-1)=4\cdot k^2\)
\(\Rightarrow(c-a)(c-a)=(c-a)^2=(2016k-2014k)=[k(2016-2014)]^2=(k\cdot2)^2=k^{2\cdot4}\)
Rồi tự suy ra đấy
Bạn Namikaze Minato làm đúng rồi đấy
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}\)
\(=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)
\(=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow a-b=-\frac{c-a}{2};b-c=-\frac{c-a}{2}\)
do đó: \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=0\)
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)
=> \(\hept{\begin{cases}a=2014k\\b=2015k\\c=2016k\end{cases}}\)
Suy ra \(M=4\left(2014k-2015k\right)\left(2015k-2016k\right)-\left(2016k-2014k\right)^2=4k^2-4k^2=0\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
Cho các số nguyên a,b,c thỏa mãn
\(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)
Tính giá trị biểu thức: \(\frac{2015a^2+b^2}{c^2}=\frac{2015b^2+c^2}{a^2}=\frac{2015c^2+a^2}{b^2}\)
Các bn giúp mk nha.Mk đg cần gấp
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)