cho đa thức P(x)=ax^3+bx^2+cx+d thỏa mãn P(0)=1 và P(x+1) - P(x)=x^2 với mọi số thực x, tìm a,b,c d
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
P(x)=ax^3+bx^2+cx+d biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
Bài 1) Xác định hệ số a,b,c,d thỏa mãn các hệ thức sau với mọi giá trị của x
a) x^4+x^3-x^2+ax+b=(x^2+x-2).(x^2+cx+d)
b) x^3-ax^2+bx-c=(x-a).(x-b.(x-c)
Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp
pp U.C.T @ nỗi ám ảnh là đây
\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)
câu b để tí nx mình làm nốt
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
\(P(x)=ax^3+bx^2+cx+d\) biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
A chia hết cho 5, chia hết cho 49 nên A chứa các thừa số nguyên tố 5 và 7. Số 10 chỉ có một cách viết thành một tích của hai thừa số lớn hơn 1 là 5. 2 (và không thể viết thành một tích của nhiều hơn hai thừa số lớn hơn 1). Do đó :
\(F(x)=ax^3+bx^2+cx+d\) biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức F(x)
Gia su :f(x)=0 tai x=1
=>a1^3+b1^2+c1+d=0
hay a+b+c=0 (1)
ma a+b+c=0 (gt) (2)
Tu1va 2 suyra:x=1 la nghiem cua da thuc f(x)
a) Xác định a,b,c,d để đa thức\(f\left(x\right)=ax^4+bx^3+cx^2+dx+c\) thoả mãn điều kiện \(f\left(x\right)-f\left(x-1\right)=x^3\) với mọi x và f(0) = 0