tìm số nguyên x,y sao cho x-3=y.(x+2),(x+1).(xy-1)=3
tìm số nguyên x,y sao cho x-3=y.(x+2); (x+1).(xy-1)=3
tìm số nguyên x,y sao cho x-3=y.(x+2),(x+1).(xy-1)=3
Tìm các số nguyên dương x và y sao cho 1/x+1/y+1/xy=2/3
tìm các số nguyên x,y sao cho
a) ( x+3) ( y+1 ) = 3
b) ( x-1 ) ( xy+1)=2
c) xy - 2x=5
tìm các số nguyên x và y sao cho:
a) (x+3).(y+1)=3
b) (x-1).(xy+1)=2
c) xy- 2x =5
kb nick tok đi
id;minyoonibts
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
bài 1: tìm các số nguyên x và y sao cho
a, (x+3)(y+1)=3
b,(x-1)(xy+1)=2
c, xy-2x=5
\(a)\)
\(\left(x+3\right)\left(y+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)
Ta có bảng sau:
\(x+3\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(y+1\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) | \(0\) | \(-6\) |
\(y\) | \(2\) | \(-4\) | \(0\) | \(-2\) |
Vậy ...
\(b)\)
\(\left(x-1\right)\left(xy+1\right)=2=1.2=\left(-1\right).\left(-2\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(xy+1\) | \(2\) | \(-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
\(y\) | \(\frac{1}{2}\) | Loại | \(0\) | \(2\) |
Vậy ...
\(c)\)
\(xy-2=5\)
\(\Leftrightarrow x\left(y-2\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-2\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(y\) | \(7\) | \(-3\) | \(3\) | \(1\) |
Vậy ...
Tìm các số nguyên x và y sao cho :
a) ( x + 2 ) ( y - 1 ) = 3
b) ( 3 -x ) ( xy + 5 ) = -1
a) Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}x+2\inℤ\\y-1\inℤ\end{cases}}\)
\(\Rightarrow x+2,y-1\)là các cặp ước của 3.
Ta có bảng sau :
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
y-1 | 3 | -3 | 1 | -1 |
y | 4 | -2 | 2 | 0 |
Đánh giá | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(-1,4\right);\left(-3,-2\right);\left(1,2\right);\left(-5,0\right)\right\}\)
a) ( x + 2 ) ( y - 1 ) = 3
Mà x,y Z
=>( x + 2 ) và ( y - 1 ) Ư(3)={±1;±3}
Ta có bảng
x+2 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | -1 | -3 | 1 | -5 |
y | 4 | -2 | 2 | 0 |
Vậy (x,y) thuộc {(-1;4);(-3;-2);(1;2);(-5;0)}
b) ( 3 -x ) ( xy + 5 ) = -1
Vì x,y thuộc Z
=>( 3 -x ) và ( xy + 5 ) thuộc Ư(-1)={ ±1}
Ta có bảng
3-x | 1 | -1 |
xy+5 | -1 | 1 |
x | 2 | 4 |
y | -3 | -1 |
Vậy x,y thuộc {(2;-3);(4;-1)}
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố