tính x-1/2011+x-2/2010=x-3/209+x-4/2004
a/Tính nhanh:
1 x 2 x 3 + 2 x 4 x 6 + 3 x 6 x 9 + 4 x 8 x 12
b/So sánh A và B biết:
A=2010 +2011 / 2011 +2012 B=2010/2011 + 2011/2012
ai đúng thì mình sẽ tick nha
a
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
CMR: \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
tìm x biết:
\(|x-\frac{1}{3}|=|\left(-3,2\right)+\frac{2}{5}|\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
\(\left|x-\frac{1}{3}\right|=\left|-3.2+\frac{2}{5}\right|=\left|-\frac{14}{5}\right|\)\(=\frac{14}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{14}{5}\\x-\frac{1}{3}=-\frac{14}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{47}{15}\\x=-\frac{37}{15}\end{cases}}\)
Vậy............
b,
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)
\(\Leftrightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}+1-\frac{x-4}{2008}+1=0\)
\(\Leftrightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}-\frac{x-4-2008}{2008}=0\)
\(\Leftrightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x-2012=0
=>x=2012
Vậy ..............
TK MK NHA
*****CHUC BN HOC GIỎI*****
Tính nhanh:
a, 2010 x 3+ 2010 x 6 + 2010
b, 2011 x 89 + 10 x 2011 + 2011
a, 2010 x 3+ 2010 x 6 + 2010
= 2010 x ( 3 + 6 + 1)
= 2010 x 10
= 20100
b, 2011 x 89 + 10 x 2011 + 2011
= 2011 x (89 + 10 + 1)
= 2011 x 100
= 201100
Tính nhanh:
a, 2011 x 3+ 2011 x 6 + 2011
b, 2010 x 89 + 10 x 2010 + 2010
a, 2011 x 3+ 2011 x 6 + 2011
= 2011 x ( 3+6+1)
= 2011 x 10
= 20110
b, 2010 x 89 + 10 x 2010 + 2010
= 2010 x (89+10+1)
= 2010 x 100
= 201000
cho x^1 +x^2+x^3+................+x^2011 =0
x^1+x^2=x^3+x^4=.................=x^2009+x^2010=2
tìm x^2011
x1 + x2 + x3 +.....+ x2011 = 0
=> (x1 + x2) + (x3 + x4) +....+(x2009 + x2010) + x2011 = 0
=> 2 + 2 + 2 +.....+ 2 + x2011 = 0
=> 1005 . 2 + x2011 = 0
=> 2010 + x2011 = 0
=> x2011 = -2010
=> Không có giá trị nào của x thỏa mãn đề bài
cho x^1 +x^2+x^3+................+x^2011 =0
x^1+x^2=x^3+x^4=.................= x^2009+x^2010=2
tìm x^2011
x1 + x2 + x3 +.....+ x2011
= (x1 + x2) + (x3 + x4) +....+ ( x2009 + x2010) + x2011
= 2 + 2 + 2+.....+ 2 + x2011
= 1005 . 2 + x2011
=2010 + x2011 = 0
=> x2011 = -2010
=> Không có giá trị của x thỏa mãn đề bài
Cho K = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .... + ( 1 + 2 + 3 + .... + 2012 ) / 2012 x 1 + 2011 x 2 + 2010 x 3 + .. + 2 x 2011 + 1 x 2012 .
Tính K .
tử số K ta thấy: số 1 xuất hiện trong tất cả các tổng con nên số 1 xuất hiện 2012 lần. số 2 xuất hiện trong 2011 tổng con nên số 2 xuất hiện 2011 lần... tưởng tự số 2012 sẽ xuất hiện 1 lần
=> tử số của K= 1.2012+2.2011+3.2010+4.2009+...+2012.1
K= 1.2012+2.2011+3.2010+4.2009+...+2012.1/2012.1+2011.2+2010.3+....+2011.2+1.2012
K=1
Cho K = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .... + ( 1 + 2 + 3 + .... + 2012 ) / 2012 x 1 + 2011 x 2 + 2010 x 3 + .. + 2 x 2011 + 1 x 2012 .
Tính K .
Câu hỏi tương tự Đọc thêmToán lớp 5Violympic\( {x+1{} \over 2012}+{x+2{} \over 2011}-{x+3{} \over 2010}-{x+4{} \over 2009}. Tính\)
cho x1+x2+x3+...+x2011=0 và x1+x2=x3+x4=...=x2009+x2010=2
tính x2011
Ta có \(x_1+x_2+x_3+...+x_{2010}+x_{2011}=0\)
Mà \(x_1+x_2=x_3+x_4=...=x_{2009}+x_{2010}=2\)
Thế vào ta có
\(2+2+2+2+...+2+x_{2011}=0\)
Ta có số số hạng là
\(2010-1+1=2010\)(số hạng)
Mà 1 cặp gồm 2 số hạng nên có số cặp là
\(\frac{2010}{2}=1005\)(cặp)
Vì mỗi cặp có tổng là 2 nên
ta có
\(1005\cdot2+x_{2011}=0\)
Suy ra \(2010+x_{2011}=0\)
Suy ra \(x_{2011}=0-2010=-2010\)
Vậy \(x_{2011}=-2010\)
Ở đây bn toàn bị nhầm ở chỗ \(x_1+x_2=x_3+x_4=...=x_{2009}+x_{2010}\)