Chứng tỏ rằng tồn tại 1 lũy thừa của 3 sao cho nó có 2 chữ số tận cùng là 01
Chứng minh rằng tồn tại 1 lũy thừa của 7 mà 3 chữ số tận cùng của nó là 001
Chứng minh rằng tồn tại 1 lũy thừa của 3 mà 3 chữ số tận cùng của nó là 001
Chứng minh rằng tồn tại lũy thừa của 79 mà các chữ số tận cùng là 00001
giải theo nguyên lý Dirichlet nhé
Xét tổng quát
Chứng minh rằng tồn tại hai lũy thừa của 2019 mà có 4 chữ số tận cùng giống nhau .
Xét 10001 số hạng 2019,20192,...,201910001
Theo nguyên lí Dirichlet co 2 số có cùng số dư khi chia co 10000
Gọi 2 số đó là 2019m và 2019n(m,n là số tự nhiên, m>n)=> 2019m-2019n=....0000
Vậy............
Chứng minh rằng tồn tại số tự nhiên n sao cho 3n có tận cùng của nó là 0001
Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.
Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.
Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000
=> 3b.(3a-b-1) chia hết cho 1000.
Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.
Cho biểu thức A = 3+ 3^2+ 3^3+...3^120
a, Chứng tỏ rằng A chia hết cho các số 4,13,82?
b, Tìm chữ số tận cùng của A?
c, Thu gọn biểu thức A?
d, Chứng tỏ rằng 2A + 3 là lũy thừa của 3?
d) Ta có A chia hết cho 3
=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3
=> 2A+3 chia hết cho A
A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
a) Tính A
b) Chứng tỏ rằng 2A + 3 là lũy thừa của 3
c) Chứng tỏ rằng A chia hết cho 4; 13; 52
d) Tìm chữ số tận cùng của A
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
Chứng minh rằng: tồn tại một số tự nhiên n sao cho 3n có tận cùng của nó là 0001
Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.
Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.
Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000
=> 3b.(3a-b-1) chia hết cho 1000.
Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.
Chứng minh rằng: tồn tại một số tự nhiên n sao cho 3n có tận cùng của nó là 0001