Phân tich xy ( x- y ) - xz (x+ z) + yz(2x-y+z) thanh nhân tử
phan tich da thuc thanh nhan tu :xy(x-y)-xz(x+z)+yz(2x+z-y)
Phân tích đa thức thành nhân tử:
xy(x-y)-xz(x+z)-yz(2x-y+z)
Phân tích thành nhân tử: xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= x 2 y + x y 2 + yz(y + z) + x 2 z + x z 2 + xyz + xyz
= ( x 2 y + x 2 z) + yz(y + z) + (x y 2 + xyz) + (x z 2 + xyz)
= x 2 (y + z) + yz(y + z) + xy(y+ z) + xz(y + z)
= (y + z)( x 2 + yz + xy + xz) = (y + z)[( x 2 + xy) + (xz + yz)]
= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích thành nhân tử
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Ta co :
Đặt tổng trên là A
A= xy(x+y)+yz(y+z)+xz(x+z)+2xyz
A= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
A= xy(x + y) + yz(y + z + x) + xz(x + z + y)
A= xy(x + y) + z(x + y + z)(y + x)
A= (x + y)(xy + zx + zy + z2 )
A= (x + y)[x(y + z) + z(y + z)]
A= (x + y)(y + z)(z + x)
Phân tích thành nhân tử xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
**** đi nak , làm rui đó
phân tích đa thức thành nhân tử:
xy(x+y)-yz(y+z)+xz(x-z)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
.
.
.
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
1. Phân tích thành nhân tử:
xy(x + y) + yz(y + z) + xz(x+z) + 2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz.\)
\(=x^2y+xy^2+y^2z+yz^2+xz\left(x+z\right)+2xyz\)
\(=\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\text{(}yz^2+xyz\text{)}+xz\left(x+z\right)\)
\(=xy\left(x+z\right)+y^2\left(x+z\right)+yz\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)
\(=\left(x+z\right)\text{[}y\left(x+y\right)+z\left(x+y\right)\text{]}\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
phân tích đa thức thành nhân tử:
xy( x-y ) + yz( y-z ) + xz( z-x )
\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)
\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)
\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)
\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)
\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)
\(=\left(xy-yz\right)\left(x-y+z-x\right)\)
\(=\left(xy-yz\right)\left(-y+z\right)\)
mơn bn nha ^^
nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v
kq là: ( z - y )( x - z)( y - x )
[ вơ đắйǥ ] вé เςë ⁀ᶜᵘᵗᵉ
Ukm cảm ơn nhé quên mất đoạn cuối vẫn phân tích đc nữa