\(\frac{25+25+...=25}{15so}+\frac{15+15+...+15}{75so}\)
Rút gọn:
a) \frac{5500-25}{4400-20}=4400−205500−25=
b) \frac{2040+15}{3400+25}=3400+252040+15=
\(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}+\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}=0\)
RÚT GỌN PHÂN SỐ SAU: \(\frac{-63}{108};\frac{-33}{-77};\frac{-5}{10};\frac{14}{63};\frac{-15}{25};\frac{-45}{18};\frac{12}{15};\frac{20}{25};\frac{31}{12}\)
\(\frac{-63}{108}\)= \(\frac{-7}{12}\)
\(\frac{-33}{-77}\)= \(\frac{3}{7}\)
\(\frac{-5}{10}\)=\(\frac{-1}{2}\)
\(\frac{14}{63}\)=\(\frac{2}{9}\)
\(\frac{-15}{25}\)=\(\frac{-3}{5}\)
\(\frac{-45}{18}\)=\(\frac{-5}{2}\)
\(\frac{12}{15}\)=\(\frac{4}{5}\)
\(\frac{20}{25}\)=\(\frac{4}{5}\)
\(\frac{31}{12}\):Là phân số tối giản
t.i.c.k nha
Giải phương trình: \(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}\)
x-5/1990+x-15/1980+x-25/1970=x-1990/5+x-1980/15+x-1970/25
<=> (x-5/1990-1)+(x-15/1980-1)+(x-25/1970-1)=(x-1990/5-1)+(x-1980/15-1)+(x-1970/25-1)
<=> x-1995/1990+x-1995/1980+x-1995/1970=x-1995/5+x-1995/15+x-1995/25
<=> (x-1995)(1/1990+1/1980+1/1970-1/5-1/15-1/25)=0
<=> x-1995=0
<=> x=1995
So sánh phân số
a.\(\frac{12}{25}và\frac{25}{49}\)b.7/15 và 15/24
\(1\frac{13}{15}\cdot0,75-\left(\frac{8}{15}+25\%\right)\)
=28/15 . 3/4-(8/15+1/4)
=7/5-(32/60-15/60)
=7/5-47/60
=84/60-47/60
=37/60
\(\left(\left(\frac{17}{15}-\frac{4}{30}\right):\frac{5}{6}\right)\): \(\left(\frac{102}{25}:\left(\frac{17}{25}.\frac{1}{15}\right)\right)\) = ?
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}và2x-1=15\)
tính :
\(\frac{9^{15}\cdot8^{12}}{3^{30}\cdot4^{17}}\)\(\frac{5}{15}+\frac{14}{25}-\frac{12}{9}+\frac{2}{7}+\frac{11}{25}\)\(1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}\)c )
\(1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{3}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{5}{3}}}=1+\frac{1}{1+\frac{1}{\frac{8}{3}}}=1+\frac{1}{\frac{11}{8}}=\frac{19}{11}\)