Tính nhanh
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...........+\frac{1}{1+2+.....+30}\)
Tính nhanh:\(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+\frac{\frac{1}{2}}{1+2+3+4}+...+\frac{\frac{1}{2}}{1+2+3+4+...+100}\)
Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)
= \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)
= \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)
= \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)
= 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)
= \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)
Tính nhanh:
S=\(\frac{3}{4}-0,25-[\frac{7}{3}+(\frac{-9}{2})]-\frac{5}{6}\)
X=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(S=\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(\frac{-9}{2}\right)\right]-\frac{5}{6}\)
\(S=\frac{3}{4}-\frac{1}{4}-\left[\frac{14}{6}+\left(\frac{-27}{6}\right)\right]-\frac{5}{6}\)
\(S=\frac{1}{2}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{3}{6}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{11}{6}\)
1) a/ Tính:
\(1-\frac{1}{2};\frac{1}{2}-\frac{1}{3};\frac{1}{3}-\frac{1}{4};\frac{1}{4}-\frac{1}{5};\frac{1}{5}-\frac{1}{6}\)
Sử dụng kết quả của câu a/ để tính nhanh tổng sau :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
2)a/Tính nhanh:
B= \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
b/ Tính nhanh:
C= \(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
Bài 1 : tính nhanh
a) \(A=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)
Các bn giúp mik nhá
Tính nhanh \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1=?\)
tính nhanh \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}}\)
Tính:
K=\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{30}\left(1+2+...+30\right)\)
L=\(\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
Ai nhanh mik tick cho
.tính nhanh
\(\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)
\(=\frac{1}{2}+-\frac{1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+-\frac{1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)
\(=\left(\frac{1}{2}+-\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{-4}\right)+\left(\frac{1}{-5}+\frac{1}{5}\right)+\frac{1}{6}\)
\(=0+0+0+0+\frac{1}{6}\)
\(=\frac{1}{6}\)
\(\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)
\(=\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{-1}{5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{-1}{4}+\frac{1}{5}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\frac{1}{6}\)
\(=0+0+0+0+\frac{1}{6}\)
\(=\frac{1}{6}\)
tính nhanh:\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)
cộng hết tất cả 1/1+2+3+.....+10 thì ta chỉ cần cộng 1+2+3+4+5+6+7+8+9+10 là xong rồi tự tính