Cho tam giác ABC đều, trọng tâm G, M là 1 điểm bất kì trong tam giác. MG cắt BC,AC,AB ở A', B', C'.
CMR: A'M/A'G+ B'M/B'G+ C'M/C'G= 3
cho tam giác đều abc, trọng tâm G,M là 1 điểm bất kì nằm bên trong tam giác. Đường thẳng MG cắt các đường thẳng AB, AC,BC theo thứ tự ở A' B' C' cmr
\(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=3\)
gọi 3 đường trung tuyến đó là AD,BE,CF.
Vẽ D',E',F' là hình chiếu của M trên BC,AC,AB.
Ta có : \(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{MD'}{GD}+\frac{ME'}{GE}+\frac{MF'}{GF}\)
Đặt \(GD=GE=GF=\frac{h}{3}\)( h là chiều cao của tam giác )
\(\Rightarrow\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{h}{\frac{h}{3}}=3\)
Cho tam giác đều ABC. Trọng tâm G. M là 1 điểm bất kì nằm trong tam giác.Đg thẳng MG cắt BC,AC,AB tại A' ,B', C' CMR: A'M/A'G + B'M/ B'G+ C'M/C"G=3
Giúp mk với m.n ^^
Cho tam giác ABC đều,G là trọng tâm,cho điểm M bất kì trong tam giác.Mg cắt các cạnh BC,AC,AB tại A',B',C'.Chứng minh
\(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=3\)
Bạn tham khảo ở phần câu hỏi tương tự nhé.
https://olm.vn/hoi-dap/detail/191084232755.html
Cho tam giác đều ABC trọng tâm G, M là điểm bất kỳ nằm trong tam giác. Đường thẳng MG cắt các đường thẳng BC, AC, AB theo thứ tự ở A’, B’, C’. C/m rằng \(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=3\)
AI GIẢI NHANH MÌNH TICK CHO!
cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
( gợi ý CM :A'O/A'G+B'O/B'G+C'O/C'G =3 )
cho tam giác ABC đều. Gọi G là trọng tâm. Olaf 1 điểm nằm trong tam giác(O\(\ne\)G) Đường thẳng OG cắt BC,AB,AC tại A',B',C'
tính \(\frac{A'O}{A'G}+\frac{B'O}{B'G}+\frac{C'O}{C'G}\)
cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
Cho tam giác đều ABC. trọng tâm G và o là một điểm bất kì trong tam giá. Một đường thẳng qua O và G cắt BC, AC, AB theo thứ tự M, N, P. Chứng minh MO/MG+NO/NG+PO/PG=3
Cho tam giác ABC đều đường cao AH. Một điểm M bất kì thuộc BC. Kẻ ME, MF vuông góc với AB, AC. I là trung điểm của AM.
a) tứ giác EHIF là hình gì
b) G là trọng tâm của tam giác ABC. Chứng minh EF, HI, MG đồng quy
c) Tìm điểm M trên cạnh BC sao cho độ dài È đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó khi cạnh của tam giác ABC đều là bằng a.