\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
và x+y+z=18
1 . Tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và 2.x2 + 2.y2-3.z2= -100
b) \(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và -x+y+z = -120
c) 2x = -3y =4z và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)và x+2y+z =10
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\)và x+y=18
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và 5x-z=20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x+y-z=9
2x=3y=5z và x-2y+3z=65
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
tìm x,y,z biết :
a. \(\frac{x+1}{3}\)=\(\frac{y+1}{4}\)=\(\frac{z+3}{5}\)và x + y + z = 18
b. \(\frac{x-1}{3}\)=\(\frac{y-2}{4}\)=\(\frac{z-3}{5}\)và x+ y + z = 30
Tìm x, y, z biết \(x+\frac{1}{3}=y+\frac{2}{4}=z+\frac{3}{5}\) và x + y + z =18
Tìm x,y và z biết
1.\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x+y+z=18
2. \(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và x-y+z=36
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
x/2=2=>4
y/3=2=>6
z/4=2=>8
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
x/5=6=>30
y/6=6=>36
z/7=6=>42
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\) =>x=6.5=30;y=6.6=36;z=6.7=42
1. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2=y/3=z/4=x+y+z/2+3+4=18/9=2
Suy ra: x=2.2=4
y=3.2=6
z=4.2=8
Vậy x=4;y=6;z=8
a, \(\frac{x+1}{3}\)=\(\frac{y+2}{4}\)=\(\frac{z+3}{5}\)và x+y+z =18
b,\(\frac{x+1}{3}\)=\(\frac{y+2}{-4}\)=\(\frac{z-3}{5}\)và 3x+ 2y+4z=47
c,\(\frac{x-1}{3}\)=\(\frac{y-2}{4}\)=\(\frac{z+7}{5}\)vã+y-z=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{-2}{2}=-1\)
\(\Rightarrow x=-2;y=-2;z=-12\)
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow x=5;y=6;z=7\)
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}\)
\(\Rightarrow\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\Rightarrow\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{9+\left(-8\right)+20}=\frac{42}{21}=2\)
\(\Rightarrow x=5;y=-10;z=13\)
bài 1tim x,y,z biết
a) 4x=3y, 5y=3z và 2x-3y+z=6
b)\(\frac{x}{y}=\frac{3}{4},\frac{y}{z}=\frac{5}{7}\)và 2x+3y-z=186
c)\(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\) và x-y+=-196
d)2x=3y=5z và tri tuyệt đối của x+y-z=95
e)\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z-3x-4y=50
f)\(\frac{4}{x+1}=\frac{2}{x-2}=\frac{3}{z+2}\) và xyz=12
bài 2
a) cmr:\(3^{x+1}+3^{x+2}+3^{x+3}+.....+3^{x+100}\) chia hết cho 120
a)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\)và x-y+z=-15
c) \(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và-x+y+z=-120
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\)và x+z=y \(y=\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)và x+y+z=18