a+b+c+d=1
8a+4b+2c+d=4
27a+9b+3c+d=15
64a+16b+4c+d=56
Tính a; b; c; d
mong các bạn giúp giùm mn. cảm ơn nhiều
cho tỷ lệ thức a/b=c/d. chứng minh:
a, 2a+5b/3a-4b=2c+5d/3c-4d
b. 3a+7b/5a-7b=3c+7d/5c-7d
d. 4a+9b/4a-7b=4c+9d/4c-7d
giúp mình với ạ
Đề: Cho P(x)= x^4 + ax^3+ bx^2+ cx + d biết P(1)=10; P(2)=20; P(3)=30. Tính P(12)-P(8)
Giải:
Vì hệ số bậc cao nhất bằng 1 nên ta có:
P(x)=x^4 + ax^3+ bx^2+ cx + d ,với a,b,c,d là các tham số
Khi đó:
P(1)=1+a+b+c+d = 10
P(2)=16+8a+4b+2c+d = 20
P(3)=81+27a+9b+3c+d = 30
P(12)=20736+1728a+144b+12c+d
P(-8)=4096 - 512a + 64b - 8c + d
=>P(12)+P(-8)=24832+1216a+208b+4c+2d (*)
Ta lại có
100P(1) - 198P(2) +100P(3)
=100(1+a+b+c+d) - 198(16+8a+4b+2c+d) + 100(81+27a+9b+3c+d)
=5032+1216a+208b+4c+2d
Mặt khác:
100P(1) - 198P(2) +100P(3)
=100.10 - 198.20 + 100.30
=40
Suy ra 5032+1216a+208b+4c+2d=40
<=>1216a+208b+4c+2d= -4492 Thay vào (*) ta có:
P(12)+P(-8)=24832 - 4492=19840
Ai giải thích hộ đoạn này với Ta lại có
100P(1) - 198P(2) +100P(3)
=100(1+a+b+c+d) - 198(16+8a+4b+2c+d) + 100(81+27a+9b+3c+d)
=5032+1216a+208b+4c+2d
\(\hept{\begin{cases}a+b+c+d=-1\\8a+4b+2c+d=4\\27a+9b+3c+d=-61\end{cases}}\)
Giải HPT trên
a/b+c+d=b/a+c+d=c/b+a+d=d/c+b+a
P=2a+5b/3c+4d-2b+5c/3d+4a-2c+5d/3a+4b+2d+5a/3c+4b
cho a,b,c,d khác 0 và b^2 =ac;c^2=bd.chứng minh rằng a^3+2b^3-3c^3/b^3+2c^3-3d^3=(a+4b-5c/b+4c-5d)^3
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
CMR
-(-4a+5c-3b)-(2b-a+7c)+(-7b+3c-5a)=-9c-6b
-(2a-3c+b)+(-5b-4c+12a)-(-9b-4c+4a)+(-6a-3b-3c)+d=d
phá ngoặc lun nà
+4a-5c+3b-2b+a-7c-7b+3c-5a=(4a+a-5a)+(3b-2b-7b)+(-5c-7c+3c)=0-6b-9c=-9c-6b
-2a+3c-b-5b-4c+12a+9b+4c-4a-6a-3b-3c+d=(-2a+12a-4a-6a)+(-b-5b+9b-3b)+(3c-4c+4c-3c)+d=0+0+0+0+d=d
Cho a , b ,c ,d thỏa mãn : \(\frac{a}{a+2b}=\frac{c}{c+2d}\). Tính \(\frac{a^2d^2-4b^2c^2}{abcd}\)
Cho a ,b ,c , d thỏa mãn : \(\frac{2a+3c}{2b+3d}=\frac{3a-4c}{3b-4d}\).. Tính \(\frac{4a^3d^3-b^3c^3}{4b^3c^3-a^3d^3}\)