Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Aeris
Xem chi tiết
Thu Hang Vo Thi
8 tháng 1 2019 lúc 22:46

Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )

Mik phải đi ngủ rồi !

-Bye-

Đình Hiếu
Xem chi tiết
siêu trộm
18 tháng 3 2015 lúc 22:26

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 
ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 
=> a chia hết cho 5 
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

Mạnh Lê
4 tháng 4 2017 lúc 11:03

a = b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức .
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì =\(\Rightarrow\) x^2 =1 (mod 8) 
x2 =-1(mod 5) hoặc x= 0(mod 5) 
Nếu x chẵn thì x= \(-1\)(mod 5) hoặc x2 =1(mod 5) hoặc x= 0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 
Nếu bạn không biết đồng dư thức thì .......:))

Nguyen Manh Cuong
1 tháng 4 2018 lúc 7:52

\(⋮\)

Kiên-Messi-8A-Boy2k6
Xem chi tiết
Lâm Gia Huy
14 tháng 3 lúc 20:47

tao là fan CR7

Huy
26 tháng 11 lúc 20:58

Tao phan CR7 chứ ko phải Messi

Agent P
Xem chi tiết
trần ghi bu pha
23 tháng 11 2020 lúc 20:32

mod là j

Khách vãng lai đã xóa
Thượng Huyền Tam - Akaza
28 tháng 9 lúc 17:54

mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn

Nguyễn Thanh Thủy
Xem chi tiết
Thanh Nguyen Phuc
14 tháng 3 2021 lúc 9:06

2n+1=a^2 (1), 3n+1=b^2 (2)

Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn

suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1

(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)

suy ra 5n chia hết cho 8, suy ra n chia hết cho 8

Ta cần chứng minh n chia hết cho 5

Số chính phương có các tận cùng là 0,1,4,5,6,9

Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5

Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)

Khách vãng lai đã xóa
Vũ Tiến Dũng
13 tháng 3 2021 lúc 21:02
Chịu lớp 8 thì thôi
Khách vãng lai đã xóa
PhamTienDat
Xem chi tiết
Lê Nguyên Hạo
9 tháng 8 2016 lúc 16:17

Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4

Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8

Lại có (n + 1) (2n + 1) = 3n + 2

Ta thấy 3n + 2 = 2 (mod3)

Suy ra (n + 1) (2n + 1) = 2 (mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)

Do đó n chia hết cho 3

hoanganh nguyenthi
21 tháng 8 2018 lúc 20:58

đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))

\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)

số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)

giờ cần chứng minh \(n⋮8\)

từ cách đặt ta cũng suy ra \(n=b^2-a^2\)

vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)

do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)

từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)

Lâm Gia Huy
14 tháng 3 lúc 21:01

Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4

Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8

Lại có (n + 1) (2n + 1) = 3n + 2

Ta thấy 3n + 2 = 2 (mod3)

Suy ra (n + 1) (2n + 1) = 2 (mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)

Do đó n chia hết cho 3

 

Han_Minh
Xem chi tiết
Nguyễn Hoàng Tú Anh
5 tháng 3 2017 lúc 16:28

mk chỉ bít câu a thui: mk viết xn là x^n cho đỡ mất tjan

x6-7x3-8=0

=> x6-8x3+x3-8=0

=> x3(x3-8)+(x3-8)=0

=>(x3-8)(x3+1)=0

=> x3-8=0 hoặc x3+1=0

=>(x-2)(x2+x+4)=0 hoặc (x+1)(x2-x+1)=0

=> x-2=0 hoặc x+1=0( vì x2+x+4 và x2-x+1 luôn lớn hơn 0 với mọi x)

=> x=2 hoặc x=-1

chúc bn hok tốt ^-^

AhJin
Xem chi tiết
PRO chơi hệ cung
2 tháng 4 2021 lúc 6:03

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 

ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 

=> a chia hết cho 5 

5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

Khách vãng lai đã xóa
Xem chi tiết
Incursion_03
22 tháng 2 2019 lúc 23:17

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Tks nha bạn.