Cho tam giác ABC giả sử các đường phân giác trong và phân giác ngoài của góc A lần lượt cắt đường thẳng BC tại D và E. Cho biết AD=AE.Chứng minh rằng \(AB^2+AC^2=4R^2\)với R là bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC. Vẽ Ax và Cy lần lượt là các phân giác ngoài tại A và C, chúng cắt nhau tại I.
a) CMR: BI là phân giác góc ABC
b) Vẽ đường tròn tâm I, bán kính r tiếp xúc với các đường thẳng AB, AC và BC tại D,E,F. CMR: chu vi của tam giác ABC=2BD
c)Giả sử tam giác ABC có góc B=50 độ. Tính góc AIC
d)Giả sử tam giác ABC đều có độ dài cạnh = 5cm. TÍnh r
Cho tam giác ABC. Vẽ Ax và Cy lần lượt là các phân giác ngoài tại A và C, chúng cắt nhau tại I.
a) CMR: BI là phân giác góc ABC
b) Vẽ đường tròn tâm I, bán kính r tiếp xúc với các đường thẳng AB, AC và BC tại D,E,F. CMR: chu vi của tam giác ABC=2BD
c)Giả sử tam giác ABC có góc B=50 độ. Tính góc AIC
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
Cho (O;R) và dây cung BC cố định (BC<2R).Điểm A di động trên đường tròn sao cho tam giác ABC nhọn,Gọi AD là đường cao của tam giác ABC và H là trực tâm tam giác ABC
a)Đường thẳng chứa tia phân giác góc ngoài góc BHC cắt AB,AC lần lượt tại M,N.Chưng minh tam giác AMN cân
b)Gọi E,F lần lượt là hình chiếu của D trên BH,CH.Chứng minh OA vuông goác với EF
c)Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác góc trong của goác BAC tại K.Chứng minh rằng đường thẳng HK luôn đi qua 1 điểm cố định
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
cho tam giác ABc nhọn. Đường tròn bán kính BC cắt AB,AC lần lượt tại E và F ,BF cắt EC tại H . Tia AH cắt đường thẳng BC tại N cm tứ giác HFCN nội tiếp cm FB là phân giác góc EFN giả sử AH bằng BC tính góc BAC của tam giác ABC
1.Cho tam giác ABC có AD là tia phân giác trong của góc A. Quá D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F.
a) Tứ giác AEDF là hình gì? Vì Sao?
b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh rằng: MN//EF.
2. Cho hai đường tròn (O;R) và(O';R') tiếp xúc trong với nhau tại A, (R>R'). Qua điểm B bất kỳ trên(O') vẽ tiếp tuyến với (O') cắt (O) tại hại điểm M và N, AB cắt (O) tại C. Chứng minh rằng:
a) MN vuông góc với OC
b) AC là tia phân giác của góc MAN
cho tam giác ABC có M;Nlà trung điểm lần lượt của AB; AC . đường thẳng MN cắt đường kính AB tại D;E cắt đường kính AC tại F;G .chứng minh :chứng minh hai đường tròn trên cắt nhau tại một điểm thuộc BC .chứng minh BD ;CE là các đường phân giác trong và ngoài của góc B
Cho tam giác ABC có AC lớn hơn AB nội tiếp đường tròn O bán kính R . Đường phân giác trong và ngoài góc A cắt BC ở D và E sao cho AD = AE . Tính AB^2 + AC^2 theo R
Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O).
D là điểm thuộc cạnh BC (D khác B và D khác C).
Trung trực của CA; AB lần lượt cắt đường thẳng AD tại E, F.
Đường thẳng qua E song song với AC cắt tiếp tuyến qua C của (O) tại M.
Đường thẳng qua F song song với AB cắt tiếp tuyến qua B của (O) tại N.
2) Giả sử F N E M = B N C M . Chứng minh rằng AD là phân giác của tam giác ABC.
2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).
Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P (2).
Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra C P = B P ⇒ A D là phân giác góc B A C ^ .