Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Long Hưng
Xem chi tiết
Trần Trương Quỳnh Hoa
20 tháng 12 2015 lúc 12:58

tham khảo câu hỏi tương tự

Tài Nguyễn Tuấn
Xem chi tiết
Tài Nguyễn Tuấn
Xem chi tiết
Minh Triều
29 tháng 11 2015 lúc 20:46

Dạng chuẩn:

\(\frac{a^2}{a^2-a.100+5000}\)

tìm cách rút gọn ik

tên lạ thật
29 tháng 11 2015 lúc 20:47

ai biết đăng ảnh lên olm dạy mình với

mình ko biết 

Tài Nguyễn Tuấn
Xem chi tiết
cao nguyễn thu uyên
Xem chi tiết
kaitovskudo
17 tháng 2 2016 lúc 10:17

Hơi khó nhìn nha

cao nguyễn thu uyên
17 tháng 2 2016 lúc 10:25

mk nghĩ thế này: xét k E N* ta có:

(100-k)2 - (100-k).100+5000 

= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000

= k2 - 100k + 5000

lần lượt thay k = 1;2;3;...;99 ta có

12 - 100+ 5000 = 992 - 9900+ 5000

22 - 200+ 5000 = 982 - 9800+ 500

...

992 - 9900+ 5000 = 12 - 100 + 5000

ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)

mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)

do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)

=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)

do đó A= \(\frac{2.99}{2}=99\)

duyệt đi

nhok cô đơn
19 tháng 2 2016 lúc 8:50

tự ra đề rùi tự giải hả, vui đấy

Phạm Phương Linh
Xem chi tiết
Monkey D Luffy
15 tháng 11 2015 lúc 10:25

tớ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

không 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

biết 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

làm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bài

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

này

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^_^

Sáng Đường
Xem chi tiết
Trần Thị Mai Duyên
Xem chi tiết
_____________
Xem chi tiết