Giai phuong trinh :
a+3/x+1 -5-3x/x-2=ax+3/x^2-x-2(a là tham số)
giai phuong trinh:
a)2x(x+5)-(x-3)^2 = x^2 +6
b)(4x+7)(x-5)-3x^2=x(x-1)
a, 2x(x + 5) - (x - 3)2 = x2 + 6
<=> 2x2 + 10x - (x2 - 6x + 9) = x2 + 6
<=> 2x2 + 10x - x2 + 6x - 9 - x2 = 6
<=> 16x = 6 + 9
<=> 16x = 15
<=> x = 15/16
Vậy...
b, (4x + 7)(x - 5) - 3x2 = x(x - 1)
<=> 4x2 - 20x + 7x - 35 - 3x2 = x2 - x
<=> 4x2 - 20x + 7x - 3x2 - x2 + x = 35
<=> -12x = 35
<=> x = -35/12
Vậy...
cho phuong trinh ( a^2 - 2a -3)x + a^2 = 9. Giai phuong trinh theo tham so a
giai cac phuong trinh sau
a, (3x-1)(4x-8)=0
b,(x-2)(1-3x)=0
c,(x-3)(x+4)-(x-3)(2x-1)=0
d,(x+1)(x+2)=2x(x+2)
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
giai cac phuong trinh va bat phuong trinh sau:
2(x-1)-5=3(5-3x)
2( x - 1 ) - 5 = 3( 5 - 3x)
2x - 2 - 5 = 15 - 9x
2x - 7 = 15 - 9x
2x + 9x = 15 + 7
11x = 22
x = 2
Vậy x = 2
\(2\left(x-1\right)-5=3\left(5-3x\right)\)
\(\Leftrightarrow2x-2-5=15-9x\)
\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)
\(\Leftrightarrow2x-7=15-9x\)
\(\Leftrightarrow2x+9x=15+7\)
\(\Leftrightarrow11x=22\)
\(\Leftrightarrow x=22\div11\)
\(\Leftrightarrow x=2\)
\(\text{Vậy }x=2\)
2( x - 1 ) - 5 = 3( 5 - 3x)
2x - 2 - 5 = 15 - 9x
2x - 7 = 15 - 9x
2x + 9x = 15 + 7
11x = 22
x = 2
bài 1 : giai các phuong trinh sau :
a, (9x^2-4) (x+1) = (3x+2) (x^2-1)
b, x^4+ x^3 +x +1=0
c,x^5 - 5x^3 +4x=0
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được
Giai Phuong Trinh:
a)2(x-2)+x-2=3(x-2)
b)4(1-x)+3x=1-x
c)3(x-2)+4(1-x)=-(6+x)
a) \(2\left(x-2\right)+x-2=3\left(x-2\right)\)
\(\Leftrightarrow\left(2+1\right)\left(x-2\right)=3\left(x-2\right)\)
Vì phương trình trên luôn đúng với mọi x nên có vô số nghiệm
B) \(4\left(1-x\right)+3x=1-x\)
\(4-4x+3x=1-x\Leftrightarrow4-x=1-x\)(vô nghiệm)
GIAI PHUONG TRINH
(X-5)*(X-3)-2*(3X-4)=(X-3)^2+!2
giai phuong trinh
(x-2)^+(3x-1)(3x+1)=(x+1)^3
(x-2)^+(3x-1)(3x+1)=(x+1)^3
<=>x3-6x2+12x-8+9x2-1=x3+3x2+3x+1
<=>-6x2+12x-8+9x2-1=3x2+3x+1
<=>3x2+12x-9=3x2+3x+1
<=>12x-9=3x+1
<=>9x=10
<=>x=\(\dfrac{10}{9}\)
a) Cho phuong trinh x2 +mx+1=0. Tim dieu kien cua m de phuong trinh co nghiem kep. Tinh nghiem kep do
b) Khong giai phuong trinh, chung to phuong trinh 2x2 - 3x - 5 = 0co 2 nghiem phan biet x1 , x2. Tinh ( x1 - x2 )
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)