Cho tam giác $A B C$. Chứng minh rằng điều kiện cần và đủ để hai trung tuyến kẻ từ $B$ và $C$ vuông góc với nhau là $b^{2}+c^{2}=5 a^{2}$.
cho tam giác ABC . Chứng minh rằng điều kiện cần và đủ để 2 trung tuyến kẻ từ B và C vuông góc với nhau là : b2 + c2 = 5a2
Cho tam giác ABC có hai đường cao BK và CI cắt nhau tại H. Các đường thẳng kẻ từ B vuông góc với AB và kẻ từ C vuông góc với AC cắt nhau tại D. Chứng minh:
a) BHCD là hình bình hành
b) AI.AB=AK.AC
c) tam giác AKI đồng dạng với tam giác ACB
d) BI.BA+CK.CA=BC2
e) Tam giác ABC cần thêm điều kiện gì để DH đi qua A, khi đó tứ giác BHCD là hình gì?
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: Tam giác BEM=Tam giác CFM.
b, Chứng minh AM là trung trực của EF.
c, Từ B kẻ đường vuông góc với AB tại B, từ C kẻ đường vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A,D,M thẳng hàng
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
Câu b của bạn Dương Thị Hương Sơn dài. Mình làm cách khác ngắn hơn:
\(\Delta BEM=\Delta CFM\)
=> EB=FC, EM=FM
Ta có: AB-EB= AC - FC hay AE=AF
=> A nằm trên đường trung trực của EF (1)
Ta lại có: EM=FM
=> M nằm trên đường trung trực của EF (2)
Từ (1) và (2) suy ra: đpcm
^-^ Chúc các bạn học tốt. k ủng hộ cho mk nhé cảm ơn các bạn.
Cho tam giác ABC có hai đường cao BK và CI cắt nhau tại H. Các đường thẳng kẻ từ B vuông góc với AB và kẻ từ C vuông góc với AC cắt nhau tại D. Chứng minh:
a) BHCD là hình bình hành
b) AI.AB=AK.AC
c) tam giác AKI đồng dạng với tam giác ACB
d) BI.BA+CK.CA=BC2
e) Tam giác ABC cần thêm điều kiện gì để DH đi qua A, khi đó tứ giác BHCD là hình gì? mk cần rất gấp luôn ahhhhh
cho tam giác ABC vuông tại A và có AC=b;AB=c. hai trung tuyến AD và BE vuông góc với nhau tại G. chứng minh rằng b^2=2*c^2
cho tam giác ABC cân tại A , vẽ trung tuyến AM từ M kẻ ME vuông góc với AB tại E. Kẻ ME vuông góc AC tại F
a) chứng minh tam giác BEM= tam giác CFM
b) chứng minh Am là trung trực của EF
c) từ B kẻ đường vuông góc với AB tại B , từ C kẻ đường vuông góc với AC tại C , 2 đường thẳng này cắt nhau tại D . Chứng minh rằng 3 điểm A, M , D thẳng hàng
Bài 1: Cho tam giác ABC với trung tuyến AD. Qua D kẻ đường thẳng song song với AB; qua B kẻ đường thẳng song song với AD. Hai đường thẳng cắt nhau tại điểm E. Gọi K là trung điểm cảu đoạn EC. Chứng minh rằng: 3 điểm A, D, K thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A và có AC = b, AB = c. Hai đường trung tuyến AD, BE cắt nhau tịa G. Tìm quan hệ của b và c để AB vuông góc với BE.
Bài 3: Cho tam giác ABC, thỏa mãn 2∠B + 3∠C = 180o
. CMR: BC^2 = BC.AC + AB^2
Bài 4: Cho tam giác ABC. Chứng minh rằng các đường trung tuyến kẻ từ B và C vuông góc với
nhau khi và chỉ khi b^2 + c^2 = 5a^2
Bài 5: CMR: cos 36o = (1 + √5)/4
Bài 6: Cho tam giác ABC có (BC = a, CA = b, AB = c). Trung tuyến AD, đường cao BH và
phân giác CE đồng quy. CMR: (a + b)(a^2 + b^2 − c^2) = 2ab2
4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)
5
Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó góc B = góc C = 72 độ.
Vẽ BD phân giác góc B , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1
Cm được tam giác ABD và BCD cân => AD=BD=BC=1
cos A = cos 36 = AH/AD=x/1=x
Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)
=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)
Vậy cos 36o = (1 + √5)/4
Cho tam giác ABC cân tại A,2 đường trung tuyến BM và CN cắt nhau tại I . Chứng Minh :
A) BM=CN
B) tam giác IBC cân
C) AI là trung tuyến
D) Qua B kẻ Bx vuông góc với AB , qua C kẻ Cy vuông góc với AC
Bx cắt Cy tại K . Chứng minh rằng A;I;K thằng hàng