Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cần Có Một Cái Tên
Xem chi tiết
Vỹ Ly
3 tháng 12 2016 lúc 10:19

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

=> \(B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

k cho mik nha!

Xem chi tiết

                                                                Giải          

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Khách vãng lai đã xóa

NHầm mất tiêu

Khách vãng lai đã xóa

ĐÂy này chứ lúc nãy gửi nhầm:

Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Lời giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

Khách vãng lai đã xóa
hlc090
Xem chi tiết
Vỹ Ly
3 tháng 12 2016 lúc 10:21

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

=>\(B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

k cho mik nha!

Nguyễn Đức Tài
Xem chi tiết
Nguyễn Đức Tài
29 tháng 9 2016 lúc 21:37

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

Linh Vuong
Xem chi tiết
Nguyễn Anh Quân
7 tháng 12 2017 lúc 21:16

4B = 1.2.3.4+2.3.4.4+....+(n-1).n.(n+1).4

= 1.2.3.4+2.3.4.(5-1)+....+(n-1).n.(n+1).[(n+2)-(n-2)]

= 1.2.3.4+2.3.4.5-1.2.3.4+....+(n-1).n.(n+1).(n+2)-(n-2).(n-1).n.(n+1)

= (n-1).n.(n+1).(n+2)

=> B = (n-1).n.(n+1).(n+2)/4

k mk nha

Ha Hoang Khai
Xem chi tiết
༺༒༻²ᵏ⁸
22 tháng 5 2021 lúc 20:47

B= 1.2.3+2.3.4+ ... + (n - 1)n(n +1)

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

Khách vãng lai đã xóa
Châu Tuyết Vân
Xem chi tiết
Edogawa Conan
Xem chi tiết
Lê Minh Vũ
2 tháng 8 2017 lúc 10:49

4(1.2.3) = 1.2.3.4 - 0.1.2.3

4(2.3.4) = 2.3.4.5 - 1.2.3.4

4(3.4.5) = 3.4.5.6 - 2.3.4.5

4(n-1)n(n+1) = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

=> 4 B = (n-1)n(n+1)(n+2) => B= (n-1)n(n+1)(n+2):4

l҉o҉n҉g҉ d҉z҉
2 tháng 8 2017 lúc 10:51

Ta có : B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

=> 4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ..... + (n - 1).n.(n + 1)(n + 2)

=> 4B = (n - 1).n.(n + 1)(n + 2)

=> \(B=\frac{\text{(n - 1).n.(n + 1)(n + 2)}}{4}\)

Nguyen Trong Duong
Xem chi tiết