Tinh
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{90}+\frac{1}{100}\)
1/TINH
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(\frac{2^3}{1.3}.\frac{3^2}{2.4}.\frac{4^2^{^{^{ }}}}{3.5}......\frac{99^2}{98.100}\)
2/CMR
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}+...+\frac{1}{10000}< \frac{1}{2}\)
1/ Tính:
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Tinh a) \(\frac{\left(1+2+3+....+100\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{100}}\)
Chứng minh rằng \(\frac{1}{3^1}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{90}}-\frac{1}{3^{100}}<\frac{3}{10}\)
1) Tinh gia tri cua bieu thuc:
A=\(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
B=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0
tinh nhanh
A=\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1+2+3+.....+100}\)
\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)
\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)
kết quả k bik có sai k
cau 1
tinh A=1 +\(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+....+\frac{100}{2^{100}}\)
So sanh
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{90}+\frac{1}{100}.\)va 100
cac ban giai chi tiet giup mk voi
Bạn sai đè thì phải,đúng phải là 1/99
Ta thấy:Từ 1->1/100 có 100 số.
Ta có:100=1.100
Vì 1=1 ;1/2<1 ;1/3<1 ;1/4<1 ;... ;1/90<1 ;1/100<1.
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 1.100=100\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 100\)
tinh A+B
A=\(\frac{1}{2}+\frac{1}{3}+......+\frac{1}{100}\)
B=1- \(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
Tính A = \(\frac{M}{N}\)biết
M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
N = \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{90}{98}-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{495}+\frac{1}{500}}\)
M=100
Xét tử N
92-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=(1+1+1+...+1)-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=1-(1/9)+1-(2/10)+1-(3/11)+......+1-(90/98)+1-(91/99)+1-(92/100)
=(8/9)+(8/10)+(8/11)+ ...+ (8/98)+(8/99)+(8/100)
=8.[(1/9)+(1/10)+(1/11)+...+(1/98)+(1/99)+(1/100)]
=40[(1/45)+(1/50)+(1/55)+...+(1/495)+(1/500)]
=>N=40
=>M/N=5/2