a,tìm số nguyên n để a=3n+2/n có giá trị là 1 số nguyên
b,cho a,b thuộc n*.Hãy so sánh a+n/b+n và a/b
a,tìm số nguyên n để A=\(\frac{3n+2}{n}\)có giá trị là một số nguyên
b,cho a,b,n thuộc N* hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
Để A có giá trị là một số nguyên thì \(3n+2⋮n\)
\(\Rightarrow3n+2⋮3n\Rightarrow2⋮n\)
\(\Rightarrow n\inƯ\left(2\right)=\left\{-1;1;2;-2\right\}\)
Vậy để A có giá trị nguyên thì \(n\in\left\{-1;1;2;-2\right\}\)
1.Cho A=2n+3/n,n thuộc Z
a) Với giá trị nào của n thì A là phân số
b)Tìm giá trị n để A là số nguyên
2.Tìm số nguyên sao cho phân số 3n-1/3n-4 nhận giá trị nguyên
3)So sánh các phân số 6 a+1/a+2 và a+2/a+3
a) Cho phân số A= 3n-5/n+4 (n thuộc Z,n khác -4). Tìm n để A có giá trị nguyên
b) so sánh A=2013^2010+1/2013^2011+1 và B=2013^2011-2/2013^2012-2
c) Tìm các số nguyên n sao cho 3n-16 chia hết cho n+3
a tìm số nguyên n để A = \(\frac{3n+2}{n}\)có giá trị là một số nguyên
b cho a , b \(\varepsilonℕ^∗\).hãy so sánh\(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)
A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }
b) Thiếu điều kiện n là số nguyên dương.
Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)
\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
TH1: b > a
=> b - a > 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
TH2: b < a
=> b - a < 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)
=> \(\frac{a+n}{b+n}< \frac{a}{b}\)
TH1: b = a
=> b - a = 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)
=> \(\frac{a+n}{b+n}=\frac{a}{b}\)
Kết luận:...
a)Để A nguyên thì (3n+2)chia hết cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}
b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh
1/cho phân số B=6n-1/3n+2(n thuộc Z)
a)tìm n thuộc Z để B có giá trị nguyên
b)tìm n thuộc Z để b có giá trị nhỏ nhất
2/so sánh A và B biết
A = 1011-1/1012-1 và B=1010+1/1011+1
1)Tìm n thuộc Z để phân số A=3n+2/n-1 có giá trị nguyên
2)Tìm n thuộc N để phân số A=8n+193/4n+3
a)có giá trị là một số tự nhiên
b)là phân số tổi giản
3) Tìm a,b thuộc N (a<b) biết ƯCLN(a,b)=10 và BCNN(a,b)=900
4)So sánh A và B biết A=20052005+1/20052006+1
B=20052004+1/20052006+1
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để \(3+\frac{5}{n-1}\) là số nguyên <=> \(\frac{5}{n-1}\) là số nguyên
=> n - 1 thuộc Ư(5) = { - 5; - 1; 1; 5 }
Ta có bảng sau :
n - 1 | - 5 | - 1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
Vậy n = { - 4 ; 0 ; 2 ; 6 }
Cho A = n + 3 n + 2 với n ∈ Z.
a) Tìm điểu kiện của số nguyên n để A là phân số.
b) Tính giá trị của phân số A khi n = 1; n = -1.
c) Tìm số nguyên n để phân số A có giá trị là số nguyên:
a) n ∈ Z và n ≠ –2
b) HS tự làm
c) n ∈ {-3;-1}
cho biểu thức : A= 3n + 2 / n + 1 ( n thuộc Z, n # -1 )
a, tìm giá trị của n để A có giá trị là số nguyên
b. chứng minh A là phân số tối giản với mọi giá trị của n
Cho A=6n+4/3n+4 với n thuộc Z
a) Tìm số nguyên n để A có giá trị là 1 số nguyên
b) Tìm số nguyên n để A đạt giá trị nhỏ nhất