Tìm x,y biết 4x=7y và x2+y2=260
tìm x,y biết 4x=7y và x^2+y^2=260
Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)
Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)
Khi đó : x2 + y2 = 260
<=> ( 1/4k )2 + ( 1/7k )2 = 260
<=> 1/16k2 + 1/49k2 = 260
<=> k2( 1/16 + 1/49 ) = 260
<=> k2.65/784 = 260
<=> k2 = 3136
<=> k = ±56
Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)
Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)
bài 1 : tìm x ; y biết 4x=7y và x^2+y^2=260
bài 2 tìm x;y;z biết
x/y/z=3:5:(-2)và 5x -y+3z=-16
bài 3 tìm x;y;z biết x:y:z =4/5/6 và x^2-2y^2+z^2=18
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
Tìm x,y biết:
a. x/2=y/3 và 5x-3y=1
b.x/3=y/4 va xy= 108
c.4x=7y và x2+y2=260
tìm x,y biêt 4x = 7y và x2 + y2 = 260
Ta có : \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Leftrightarrow\frac{x^2}{49}=\frac{y^2}{16}\) và \(x^2+y^2=260\)
Áp dụng t/c của dãy tỉ số = nhau, ta có :
\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
Khi đó : \(\frac{x^2}{49}=4\Rightarrow x=+-14\)
\(\frac{y^2}{16}=4\Rightarrow y=+-8\)
Vậy ___________________________
cho 4x=7y và x^2 + y^2=260. tính x+y
\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)
Với x=-14 thì y=-8\(\Rightarrow x+y=\left(-14\right)+\left(-8\right)=-22\)
Với x=14 thì y=8\(\Rightarrow x+y=14+8=22\)
X/2=y/2 và x^2 y^2 =2
4x=7y và x^2 + y^2=260
tìm 2 số x,y biết
a) \(\frac{x}{2}=\frac{y}{4}\)= x2 y2 = 2
b) 4x = 7y và x2+y2 + 260
a)x=\(\frac{1}{5}\)
y=\(\frac{2}{5}\)
b)x=28
y=16
4x=7y và x^2+y^2=260
Ta có:4x=7y
\(\Rightarrow\)\(\frac{x}{7}\)=\(\frac{y}{4}\)
\(\Rightarrow\)\(\frac{x^2}{49}\)=\(\frac{y^2}{16}\)
AD t/c dãy các tỉ số bằng nhau,ta có
\(\frac{x^2}{49}\)=\(\frac{y^2}{16}\)=\(\frac{x^2+y^2}{49+16}\)=\(\frac{260}{65}\)=4
\(\Rightarrow\)\(x^2\)=4.49=196\(\Rightarrow\)x=\(\pm\)14
\(\Rightarrow\)\(y^2\)=4.16=64\(\Rightarrow\)y=\(\pm\)8
\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)
Với x=14 thì y=8
Với x=-14 thì y=-8
Tìm 2 số x,y biết: a) \(\frac{x}{2}=\frac{y}{4}\) và x2y2=2
b) 4x = 7y và x2 + y2 = 260