Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Thanh Thư
Xem chi tiết
lớp 10a1 tổ 1
29 tháng 10 2015 lúc 22:07

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

Trần Thị Thanh Thư
Xem chi tiết
Lê Quang Duy
Xem chi tiết
kaitovskudo
20 tháng 1 2016 lúc 21:57

n5 - n = n.(n4 - 1) = n.(n4 - 1).(n4 + 1)= n.(n-1).(n+1).(n4+1) (*)

Ta nhận thấy trong 3 thừa số n, n-1, n+1 thì có 1 số chia hết cho 3 vì đây là 3 số tự nhiên liên tiếp. 
Trong 3 số đó cũng phải có một số chẵn nên tích của chúng chia hết cho 2. 
Vì 2 và 3 nguyên tố cùng nhau nên tích 3 số đó sẽ chia hết cho 6. 
Bây giờ ta chứng minh (*) chia hết cho 5 như sau: 

Nếu n chia hết cho 5 thì dĩ nhiên (*) chia hết cho 5. 
Nếu n chia cho 5 dư 1 hoặc dư 4 thì dĩ nhiên n-1 hoặc n+4 tương ứng sẽ chia hết cho 5. 
Nếu n chia cho 5 dư 2 hoặc 3 thì n có dạng : 
n= 5k+2 hoặc 5k + 3 
Khi đó n2 +1 : 
Hoặc bằng: (5k+2)2 +1 = 25k2 + 20k +4 + 1= 5(5k2 + 4k +1) , dĩ nhiên nó chia hết cho 5. 
Hoặc bằng: (5k+3)2 +1 = 25k2 + 30k +9 + 1= 5(5k2 + 6k +2) , dĩ nhiên nó cũng chia hết cho 5. 
Vậy với mọi trường hợp khi n chia cho 5 có số dư là bao nhiêu, thì (*) cũng chia hết cho 5. 

(*) chia hết cho 5 và cho 6, mà 5 và 6 nguyên tố cùng nhau nên (*) chia hết cho 30.

Đinh Quang Minh
20 tháng 1 2016 lúc 21:58

toán ko phải lớp 6 

Anh Thư Nguyễn
Xem chi tiết
Trịnh Tiến Đức
2 tháng 10 2015 lúc 21:16

3n+2-2n+2+3n-2n

= ( 3n+2+3n)-(2n+2+2n)

= 3n(32+1)-2n(22+1)

= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10

b) 7n+4-7n=7n(74-1)=7n.2400

Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30

Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N

c) 62n+3n+2+3n=22n.3n+3n(32+1)

=22n.32n+3n.11 chia het cho 11

đ) câu hỏi tương tự nhé

l-i-k-e mình nhé

zoombie hahaha
Xem chi tiết
zZz Thuỷy Phạmm xXx
8 tháng 8 2015 lúc 11:01

A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 => -1 chia hết cho 5 => A chia hết cho 30
Nếu n=5k+2 => ^2+1=25k^2+20k+5 chia hết cho 5
=> A chia hết cho 10
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>+1=5k+5 chia hết cho 5
=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30

Đặng Minh Hiếu
Xem chi tiết
mokona
1 tháng 2 2016 lúc 16:57

ko thể chứng minh đc hay sao ấy? nhìn kì sao à?

Thủy Lê
Xem chi tiết
Quản Xuân Trường
Xem chi tiết
Lê Trần Ngọc Hân
Xem chi tiết