cho tam giác ABC vuông tại A. gọi M,n lần lượt là 2 điểm trên cạnh AB và AC sao cho AM=1/3 AB, an=1/3 ac. biết BN=sin α, CM=cos α với 0<α<90. tính BC
cho tam giác ABC vuông tại A. gọi M,n lần lượt là 2 điểm trên cạnh AB và AC sao cho AM=1/3 AB, an=1/3 ac. biết BN=sin α, CM=cos α với 0<α<90. tính BC
cho tam giác ABC vuông tại A. gọi M,n lần lượt là 2 điểm trên cạnh AB và AC sao cho AM=1/3 AB, an=1/3 ac. biết BN=sin α, CM=cos α với 0<α<90. tính BC
cho tam giác ABC vuông tại A. gọi M,n lần lượt là 2 điểm trên cạnh AB và AC sao cho AM=1/3 AB, an=1/3 ac. biết BN=sin α, CM=cos α với 0<α<90. tính BC
Cho tam giác ABC, AB=12, AC=15. Trên các cạnh AB,AC lần lượt lấy M và N sao cho AM=5, AN=4.
a, CMR:tứ giác MNCB có các cặp góc đối bù nhau
b, Gọi O là giao điểm của BN và CM. CMR: OB.ON=OC.ON
a)Xét \(\Delta\) NAM và \(\Delta\)BAC có:
\(\frac{BA}{AC}=\frac{4}{5};\frac{NA}{AM}=\frac{4}{5}\)
^A_chung
Vậy\(\Delta\)NAM đồng dạng\(\Delta\) BAC (c.g.c)
=> đpcm
b, Xét \(\Delta\)NAB và \(\Delta\)MAC ta có :
\(\frac{AM}{AC}=\frac{1}{3};\frac{AN}{AB}=\frac{1}{3}\)
\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
^A_chung
Vậy \(\Delta\)NAB đồng dạng với \(\Delta\)MAC (c.g.c)
=> ^ANB = ^AMC
=> \(\Delta\)BOM đồng dạng với \(\Delta\)COM(gg)
Vì có ^ABN = ^ACM ; ^MOB = ^NOC (đđ)
=> \(\frac{OM}{OB}=\frac{ON}{OC}\Rightarrowđpcm\)
câu a mình ko hiểu
Cho tam giác ABC, AB=12,AC=15. Trên các cạnh AB,AC lần lượt lấy M và N sao cho AM=5, AN=4.
a, CMR tứ giác MNCB có các cặp góc đối bù nhau
b, Gọi O là giao điểm của BN và CM. CRM: OB.ON=OC.OM
Cho tam giác ABC, AB=12, AC=15. Trên các cạnh AB,AC lần lượt lấy M và N sao cho AM=5, AN=4.
a, CMR tứ giác MNCB có các cặp góc đối bù nhau
b, Gọi O là giao điểm của BN và CM. CMR OB.ON=OC.ON
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Gọi M và N lần lượt là các điểm đối xứng của H qua AB và AC
1) Cm tứ giác AMBH nội tiếp
2) Cm AM=AH=AN
3) Gọi giao điểm của MN với AB và AC lần lượt là F và E. Cm E thuộcđường tròn ngoại tiếp tứ giác AMBH
4) Cm 3 đường thẳng AH,BE,CF đồng quy
Bài 1:Cho tam giác nhọn ABC Kẻ AH vuông góc với BC(H thuộc BC), AB=13 cm. AH=12 cm. HC=16 cm. Tính độ dài đoạn thẳng AC,BC
Bài 2: Cho tam giác ABC vuông tại A. Một đường thẳng cắt cạnh AB,AC ở D và E.Chứng minh CD2-CB2=ED2-EB2
Bài 3: Cho tam giác ABC vuông tại A có AB:AC=8:15 và BC=51 cm
a/ Tính độ dài AB,AC
b/ Tính diện tích tam giác ABC
4/Cho tam giác ABC cân tại A vẽ BC,CE lần lượt vuông góc với AC và AB. Gọi I là giao điểm của BD và CE
a/ Chứng minh rằng tam giác AEI=tam giác ADI
b/ Gọi M là trung điểm BC. Chứng minh 3 điểm A,I,M thẳng hàng.
AI KO LÀM THÌ ĐỪNG CMT DÙM CÁI!
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui