A= 1/3^2-1/3^4+1/3^6-1/3^8+...+1/3^2006-1/3^2008
Tính nhanh P=1/3^2 - 1/3^4 +1/3^6 - 1/3^8 + ..... + 1/3^2006 - 1/3^2008
cho a=1+3^2+3^4+3^6+...+3^2006+3^2008 và b=3^2010-1/8 so sánh a va b
ta có
\(a=1+3^2+3^4+..+3^{2008}\)
\(\Rightarrow9a=3^2+3^4+..+3^{2010}\) lấy hiệu hai phương trình ta có
\(8a=3^{2010}-1\Rightarrow a=\frac{3^{2010}-1}{8}=b\)
Chứng minh rằng tổng P= 1/3^2-1/3^4+1/3^6-1/3^8+...+1/3^2006-1/3^2008 nhỏ hơn 0,1
Chứng minh rằng tổng M =1/3^2-1/3^4+1/3^6-1/3^8+.....+1/3^2006-1/3^2008 nhỏ hơn 0,1
a) CMR 1/1.2+1/3.4+1/4.5+...+1/49.50=1/26+1/27+...+1/50
b) so sánh
A= 1/3^2-1/3^4+1/3^6-1/3^8+...+1/3^2006-1/3^2008
http://olm.vn/hoi-dap/question/157302.html
\(\text{Đ}\text{ặt}\)\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\)
Chứng minh rằng P=1/3^2-1/3^4+1/3^6-1/3^8+...+1/3^2006-1/3^2008 nhỏ hơn 0,1
júp mik nhanh với!!!
1 Tính
A (1-1/2) * (1-1/3 ) * (1-1/4 ) * .....*(1-1/19)* ( 1-1/20)
B 3/2 * 4/3 * 6/5* ......* 2006/2005 * 2007/2006 * 2008/2007
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot......\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot......\cdot\frac{19}{20}\)
\(A=\frac{1.2.3.....19}{2.3........20}\)
\(A=\frac{1}{20}\)
A=20008+2007/2+2006/3+2005/4+...+2/2007+1/2008 / 1/2+1/3+1/4+1/5+1/6+1/7+...+1/2008
a=...
Tính nhanh
A=1×5×6+2×10×12+24×8×10/1×35+2×6×10+8×6×20
B=2006×2008-3/2005+2005×2008
C=18×123+9×4567×2+3×5310×6/1+4+7+.......+55+58-410
B=2006 * 2008 -3 / 2005 + 2005 * 2008
B=(2005+1)* 2008 -3 / 2005 +2005 *2008
B=2005 * 2008 + 2008 -3 / 2005 +2005*2008
B=2005 * 2008 + 2005 / 2005 +2005 * 2008
B= 1