rút gọn biếu thức:
\(y=\frac{2x+1}{x+1}\)
Cho biếu thức: P= \left(1+\frac{4}{\sqrt{x}-1}+\frac{1}{x-1}\right):\left(\frac{x+2\sqrt{x}}{x-1}\right)
a) Rút gọn P
b)Tìm giá trị của x để P=2
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên cảu x để biếu thức A nhận giá trị nguyên
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Câu 1:
\(P=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ac}+\sqrt{c\left(a+b+c\right)+ab}\)
\(P=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(P\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=\frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}\)
\(=\frac{\left(2a+a+a\right)+\left(2b+b+b\right)+\left(2c+c+c\right)}{2}\)
\(=\frac{4\cdot\left(a+b+c\right)}{2}=\frac{4\cdot2}{2}=4\)
Vậy \(maxP=4\Leftrightarrow a=b=c=\frac{2}{3}\)
rút gọn biếu thức: (x+1)^3+(x-1)^3+x^3-3x(x+1)(x-1)
C=﴾x+1﴿^3+﴾x‐1﴿^3 ‐3x﴾x+1﴿﴾x‐1﴿
=﴾x^ 3+3x^ 2+3x+1﴿+﴾x^ 3 ‐3x ^2+3x‐1﴿‐3x﴾x^ 2 ‐1﴿
=x^ 3+3x^ 2+3x+1+x^ 3 ‐3x^ 2+3x‐1‐3x^ 3+3x
=‐x^ 3+9x
Cho biểu thức A=\(\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)
a)Rút gọn biểu thức A
b)Tính giá trị của biếu thức A với x=4
c)tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
đk:x khác 0,+-2,2
Cho biếu thức P=4x3-(2-4x)(x2-3x+1)
a) Rút gọn biểu thức P
b) Tính giá trị của P tại x=\(\frac{-1}{2}\)
a)\(P=4x^3-\left(2-4x\right).\left(x^2-3x+1\right)\)
\(=4x^3-\left(2x^2-6x+1-4x^2+12x^2-4x\right)\)
\(=4x^3-2x^2+6x-1+4x^2-12x^2+4x\)
\(=4x^3-10x^2+10x-1\)
b) Thay \(x=\frac{-1}{2}\) vào biểu thức trên
Ta Có : \(4.\left(\frac{-1}{2}\right)^3-10.\left(\frac{-1}{2}\right)^2+10.\left(\frac{-1}{2}\right)-1\)
\(=\frac{-1}{2}-\frac{5}{2}-5-1\)
\(=-3-5-1\)
\(=-8-1=-9\)
\(y=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\).Rút gọn biểu thức
Rút gọn biểu thức sau:
\(A=\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x^2-2x+1\right)^2}}\)
\(A=\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x^2-2x+1\right)^2}}\)
\(=\frac{x-1}{\sqrt{y}-1}.\frac{\sqrt{\left(y-2\sqrt{y}+1\right)^2}}{\sqrt{\left(x^2-2x+1\right)^2}}\)
\(=\frac{x-1}{\sqrt{y}-1}.\frac{|y-2\sqrt{y}+1|}{|(x^2-2x+1)|}\)
\(=\frac{x-1}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}y\ge0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}y\ge0\\x\ne1\end{cases}}}\)
\(A=\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x^2-2x+1\right)^2}}\)
\(=\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}}\)
\(=\frac{\left(x-1\right)|\sqrt{y}-1|}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\frac{|\sqrt{y}-1|}{\left(\sqrt{y}-1\right)}\)
TH1 : \(y>1\Rightarrow\sqrt{y}>1\Rightarrow\sqrt{y}-1>0\)
\(\Rightarrow|\sqrt{y}-1|=\sqrt{y}-1\)
\(\Rightarrow A=\frac{\sqrt{y}-1}{\sqrt{y}-1}=1\)
Th2 : \(0< y< 1\Rightarrow\sqrt{y}< 1\Rightarrow\sqrt{y}-1< 0\)
\(\Rightarrow|\sqrt{y}-1|=-\left(\sqrt{y}-1\right)\)
\(\Rightarrow A=\frac{-\left(\sqrt{y}-1\right)}{\sqrt{y}-1}=-1\)
KL : Nếu \(0< y< 1\Rightarrow A=-1\)
Nếu \(y>1\Rightarrow A=1\)
RÚT GỌN CÁC BIỂU THỨC SAU
\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right)\)
\(B=\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\)
AI BIẾT LÀM GIÚP MÌNH VỚI
rút gọn biểu thức b1=x/căn x-1 - 2x-căn x/x-căn x
rút gọn hộ mình với\(\frac{x}{\sqrt{x-1}}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)