CMR A=5/3.7+5/7.11+...+5/(4n-1).(4n+3)=5n/4n+3
giải giúp với đang cần gấp
\(CMR:\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}=\frac{5n}{4n+3}\)
chứng minh rằng với mọi số tự nhiên n khác 0 ta dều có: 5/3.7+5/7.11+5/11.15+...+5/(4n-1).(4n+3)=5n?3.(4n+3)
CM: \(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+.....+\dfrac{3}{\left(4n-1\right)\left(4n+3\right)}=\dfrac{5n}{4n+3}\)
\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)
Mk thực sự nghĩ đề hình như bị sai hay sao ấy!
Chứng minh \(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}=\frac{5n}{4n+3}\)
Chứng minh:
\(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)\(=\frac{5n}{4n+3}\)
=\(\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+........+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{7-3}{7.3}+\frac{11-7}{7.11}+........+\frac{\left(4n+3\right)-\left(4n-1\right)}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{7}{7.3}-\frac{3}{7.3}+\frac{11}{7.11}-\frac{7}{7.11}+......+\frac{4n+3}{\left(4n-1\right)\left(4n+3\right)}-\frac{4n-1}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7.}-\frac{1}{11}+......+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3-3}{3\left(4n+3\right)}\right)\)
\(=\frac{5}{4}.\frac{4n}{3\left(4n+3\right)}=\frac{4.n.5}{3\left(4n+3\right).4}=\frac{5n}{3\left(4n+3\right)}\)
ban nen xem lai dau bai di minh giai dung 100% do
ma neu dau bai ra nhu ket qua cua to thi tick cho minh nha
Có ai giúp tôi với
Tôi sắp hi sinh rồi
Có ai đó giúp tôi với
Tôi sắp tử vong rồi
Bài 1: chứng minh với mọt số tự nhiên n khác 0 ta đều có:
a) 1/2.5+1/5.8+1/8.11+...+1/(3n-1).(3n+2)=n/6n+4
b) 5/3.7+5/7.11+5/11.15+...+5/(4n-1).(4n+3)=5n/12n+9
Chứng minh rằng:
a,\(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}=\frac{5n}{3.\left(4n+3\right)}\)
b,\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}< \frac{1}{4}\)
5/3.7+5/7.11+...+5/(4n-1).(4n+3)=5/4n+3
nếu lm sai thì thôi na
đặt vế trái lak A
4A=5(5/3.7+5/7.11+.....+5/(4n-1)(4n+3)
4A=(1/3-1/4n+3)
4A=4n+3-3/3(4n+3)
4A=4/12n+9
A=5/4n+3
\(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}=\frac{5}{4n+3}\)
\(\Leftrightarrow\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)=\frac{5}{4n+3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4n+3}=\frac{5}{4n+3}\cdot\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4n+3}=\frac{5\cdot4}{5\left(4n+3\right)}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4n+3}=\frac{4}{4n+3}\)
\(\Leftrightarrow\frac{1}{4n+3}=\frac{1}{3}-\frac{4}{4n+3}\)
\(\Leftrightarrow\frac{1}{4n+3}=\frac{4n+3-12}{3\left(4n+3\right)}\)
\(\Leftrightarrow\frac{1}{4n+3}=\frac{4n-9}{12n+9}\)
\(\Leftrightarrow\frac{3}{12n+9}=\frac{4n-9}{12n+9}\)
\(\Leftrightarrow4n-9=3\)
\(\Leftrightarrow4n=12\Leftrightarrow n=3\)
Vậy n = 3
5/3.7 + 5/7.11 + 5/11.15 +...+ 5/(4n-1).(4n+3) = 5n/4n + 3
Chú ý: dấu '/' là ngăn cách giữa tử số và mẫu số