Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Thị Thanh Thảo
Xem chi tiết
Đinh Đức Hùng
7 tháng 3 2017 lúc 19:41

\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+....+\frac{7}{99.101}\)

\(=\frac{7}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\right)\)

\(=\frac{7}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{2}\left(1-\frac{1}{101}\right)=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

\(\frac{350}{101}\)

Lê Huỳnh Minh Châu
Xem chi tiết
Lê Nho Không Nhớ
23 tháng 2 2016 lúc 19:28

B : 7/2 =2/1.3+2/3.5+...+2/99.101

B:7/2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

B:7/2=1-1/101=100/101

B=100/101*7/2=700/202=350/101

Vũ Thị Như Quỳnh
23 tháng 2 2016 lúc 19:32

B=7/2(2/1.3+2/3.5+ ...+2/99.101)

B=7/2(1-1/3+1/3-1/5+...+1/99-1/101)

B=7/2(1-1/101)=7/2.100/101=350/101

k nha bạn

Nguyễn Khang
23 tháng 2 2016 lúc 19:33

B=1/1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101

B=1-1/101=100/101

vậy B=100/101

Nguyễn Ngọc Bảo Trân
Xem chi tiết
Minh Hiền
21 tháng 2 2016 lúc 7:50

7/1.3 + 7/3.5 + 7/5.7 + ... + 7/99.101

= 7.(1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)

= 7/2 . 2 . (1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)

= 7/2 . (2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)

= 7/2 . (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)

= 7/2 . (1 - 1/101)

= 7/2 . 100/101

= 350/101

Nobita Kun
21 tháng 2 2016 lúc 7:47

\(\frac{7}{1.3}+\frac{7}{3.5}+...+\frac{7}{99.101}\)

\(=7\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

\(=\)\(\frac{7}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

\(=\)\(\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

Trịnh Thành Công
21 tháng 2 2016 lúc 7:57

=\(\frac{7}{2}x\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\right)\)

=\(\frac{7}{2}x\left(\frac{1}{3}-\frac{1}{100}\right)\)

=\(\frac{7}{2}\)x\(\frac{97}{300}\)

=\(\frac{679}{600}\)

Nguyen Le Quynh Trang
Xem chi tiết
Đoàn Đức Hà
18 tháng 5 2021 lúc 21:48

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

Khách vãng lai đã xóa
Đoàn Đức Hà
18 tháng 5 2021 lúc 21:51

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

Khách vãng lai đã xóa
Đoàn Đức Hà
18 tháng 5 2021 lúc 21:53

\(E=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

\(3E=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3E-E=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)

\(2E=1-\frac{1}{3^8}\)

\(E=\frac{3^8-1}{2.3^8}\)

\(G=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\)

\(G=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{99}=\frac{1}{99}\)

Khách vãng lai đã xóa
Mèo
Xem chi tiết
Nguyễn Huỳnh Như
Xem chi tiết
Lê Quỳnh Trang
Xem chi tiết
Lan Nguyễn Thị
9 tháng 5 2018 lúc 21:35

a, Ta có:

\(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{0,6-\frac{3}{9}+\frac{3}{11}}+\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{2\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}{3\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}+\frac{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}{-3\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}=\frac{2}{3}+\frac{-2}{3}=0\)

k đúng cho mình nha. Thanks!!!

Lan Nguyễn Thị
9 tháng 5 2018 lúc 21:24

a, bày cho mình cách viết bằng phân số đi , mình trình bày cách làm cho. k đúng cho mình nha.

Vũ Thùy Trang
9 tháng 5 2018 lúc 21:27

\(=\frac{2}{3}\times\frac{0,1-\frac{1}{9}+\frac{1}{11}}{0,1-\frac{1}{9}+\frac{1}{11}}+\frac{-\frac{2}{3}\times\left(-1-\frac{3}{7}+\frac{3}{28}\right)}{-1-\frac{3}{7}+\frac{3}{28}}\) 

=\(\frac{2}{3}+\left(-\frac{3}{2}\right)\)

=\(-\frac{5}{6}\)

Phan Thanh Hà
Xem chi tiết
Việt Phạm Lâm
19 tháng 7 2018 lúc 15:54

=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

=1-1/101

=100/101

k cho mình nha

Dương Lam Hàng
19 tháng 7 2018 lúc 15:55

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

phạm văn tuấn
19 tháng 7 2018 lúc 15:57

TA CÓ \(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)

              \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

                \(=\frac{1}{1}-\frac{1}{101}\)

                  \(=\frac{100}{101}\)

Nhuyễn Hồng Nhung
Xem chi tiết
Nguyễn Ngọc Quý
13 tháng 8 2015 lúc 22:10

Jang Ha Na làm sai nhé!!!