Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Erza Scarlet
Xem chi tiết
Hoàng Yến Vi
4 tháng 3 2017 lúc 21:05

= 6 cặp 

mk làm trong violympic rùi tin mk đi

Kamka Lanka
Xem chi tiết
Lê Ngọc Minh Châu
Xem chi tiết
Nguyễn Nguyên Quỳnh Như
Xem chi tiết
bảo
Xem chi tiết
Huy Anh Lê
9 tháng 7 2016 lúc 6:35

điều kiện để tồn tại đẳng thức: a khác b

TH1: a>b suy ra 1/a<1/b suy ra 1/a-1/b <0 suy ra vế trái âm

 mà a>b suy ra a-b>0 suy ra 1/(a-b)>0 suy ra vế phải dương

từ đó suy ra với a>b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

th2: a<b suy ra 1/a>1/b suy ra 1/a-1/b>0 suy ra vế trái dương

 mà a<b suy ra a-b<0 suy ra 1/(a-b)<0 suy ra vế phải âm

từ đó suy ra với a<b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

vậy k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

bảo
Xem chi tiết
SKT_Rengar Thợ Săn Bóng...
14 tháng 7 2016 lúc 5:26

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > \(\sqrt{ab}\)<=> a2 + b2 + 2ab /4 \(\ge\)ab <=> a2 +b2 - ab \(\ge\)ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

SKT_ Lạnh _ Lùng
14 tháng 7 2016 lúc 6:17

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > √ab<=> a2 + b2 + 2ab /4 ab <=> a2 +b2 - ab ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

Đặng Noan ♥
Xem chi tiết
Kudo Shinichi
4 tháng 12 2019 lúc 15:59

Do \(a+b+c=1\)  nên :

\(VT=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\frac{ca}{b\left(a+b+c\right)+ac}}\)

\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

Áp dụng BĐT AM - GM :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

Cộng theo vế :
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Hà Minh Hằng
Xem chi tiết
Huỳnh Hữu Tài
Xem chi tiết