Cặp số dương a và b thoã mãn
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
1/Số cặp số tự nhiên (a;b) thoã mãn : a/2+b/3=a+b/5
Số cặp số tự nhiên (x;y) thoã mãn \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)là......cặp
= 6 cặp
mk làm trong violympic rùi tin mk đi
Bài 1;Cho x,y thoã mãn 0<x<1 ; 0<y<1 và \(\frac{x}{1-x}+\frac{y}{1-y}=1\)tính P=\(x+y+\sqrt{x^2-xy+y^2}\)
Bài 2 : Cho 3 số dương a,b,c thoã mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)Chứng minh rằng \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Bài 3 cho các số a,b,c,d dương thoã mãn \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)Chứng minh rằng \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Tìm tất cả các cặp số nguyên tố a, b khác nhau đôi một thoã mãn:
\(\frac{1}{6}<\frac{1}{a}+\frac{1}{b}<\frac{1}{5}\)
Tìm cặp số dương a và b thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Số cặp số dương a và b thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) là
điều kiện để tồn tại đẳng thức: a khác b
TH1: a>b suy ra 1/a<1/b suy ra 1/a-1/b <0 suy ra vế trái âm
mà a>b suy ra a-b>0 suy ra 1/(a-b)>0 suy ra vế phải dương
từ đó suy ra với a>b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)
th2: a<b suy ra 1/a>1/b suy ra 1/a-1/b>0 suy ra vế trái dương
mà a<b suy ra a-b<0 suy ra 1/(a-b)<0 suy ra vế phải âm
từ đó suy ra với a<b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)
vậy k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)
Số cặp số dương a và b thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) là
1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab
<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0
a+b/2 > \(\sqrt{ab}\)<=> a2 + b2 + 2ab /4 \(\ge\)ab <=> a2 +b2 - ab \(\ge\)ab
Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )
Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài
1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab
<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0
a+b/2 > √ab<=> a2 + b2 + 2ab /4 ≥ab <=> a2 +b2 - ab ≥ab
Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )
Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài
Cho 3 số dương a, b, c thoã mãn a+b+c=1. Chứng minh rằng:
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ac}}\le\frac{3}{2}\)
Do \(a+b+c=1\) nên :
\(VT=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\frac{ca}{b\left(a+b+c\right)+ac}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)
Áp dụng BĐT AM - GM :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế :
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Số cặp số dương a và b thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Số cặp số dương a và b thỏa mãn: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)