Cho A=3+3^2+3^3+...+3^2004
A có phải là số chính phương không tại sao
cho a=3+3^2+3^3+...+3^2004 . biểu thức a có phải là số chính phương không và vì sao?
Tổng có 2004 số hạng, nhóm các số hạng từ trái sang phải, mỗi nhóm 4 số hạng được 501 nhóm. Trong mỗi nhóm chữ số tận cùng của tổng là 0 nên A có tận cùng là 0. Vậy A là số chính phương.
cho A = 3+3^2+.....+3^2004. A có phải số chính phương không ? Vì sao?
Ta tính được A=\(\frac{3^{2005}-3}{2}\)=\(\frac{3\cdot\left(3^{2004}-1\right)}{2}\)
Nhận thấy A chia hết cho 3.
Một số chính phương chia hết cho 3 phải chia hết cho 9
mà \(3^{2004}-1\)không chia hết cho 3 nên
\(3\cdot\left(3^{2004}-1\right)\)không chia hết cho 9 hay A không chia hết cho 9
Vậy A không phải là số chính phương
Chúc bạn học tốt!
Có thể làm như sau
32 chia hết cho 9
33 chia hết cho 9
34 chia hết cho 9
...
32004 chia hết cho 9
mà 3 không chia hết cho 9
nên A = 3+ 3^2+3^3+3^4+...+3^2004 không chia hết cho 9
vậy A không là số chính phương
Cho A= 3+ 32+ 33+...+ 32004.
A có phải là số chính phương không? Vì sao?
giả sử A là số chính phương
Ta có: \(A=3+3^2+3^3+...+3^{2004}\)
\(=3.\left(1+3+3^2+....+3^{2003}\right)\)
=> A chia hết cho 3
=> A chia hết cho 32 (vì A là số chính phương)
=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)
=> A không phải là số chính phương
P/s: Không biết đúng không, làm đại
Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)
=> A\(⋮\)3 (1)
ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)
=> A không chia hết cho 3^2 (2)
từ (1) , (2) => A không là số chính phương
ta có số chính phương chia hết cho số a thì cũng chia hết cho a^2
Tổng A = 1! +2! +3! +4! +......+2017! có phải là số chính phương hay không ?Tại Sao?
Ta có 1! + 2! + 3! + 4! = 33
những giai thừa từ 5! trở lên đều có tận cùng là 0 (vì đều chia hết cho 10)
=> 1! + 2! + 3! + ... + 2017! có tận cùng là 3
Vì không có số chính phương nào có tận cùng là 3, nên 1! + 2! + 3! + 4! + ...+ 2017! không phải là số chính phương
Cho A = 3 + 32 + 33 +...+ 32004
A có phải là số chính phương không? Vì sao?
Giả sử A là số chính phương
A = 3 + 32 + 33 +...+ 32004
A = 3(1 + 3 + 32 +...+ 32004)
=> A chia hết cho 3
=> A chia hết cho 32 (Vì A là số chính phương)
=> 1 + 3 + 32 +...+ 32004 chia hết cho 3 (Điều này rõ ràng vô lí)
Vậy A không là số chính phương
Bài 6 câu c đề Ôn tập Tết phải ko
A=1+3+3 mũ 2+ ...+3 mũ 61+3 mũ 62 có phải là số chính phương không? vì sao?
A không phải là số chính phương nhé!
Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:
A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)
Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.
Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:
A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1
Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.
Cho A=3+3^2+3^3+.....+3^30
a)CMR: A chia hết cho 13 và 52
b) Hỏi A có phải là số chính phương không? Vì sao?
A=3+32+....+330
A=(3+32+33)+(34+35+36)+...+(328+329+330)
A=3(1+3+9)+34(1+3+9)+.....+328(1+3+9)
A=3.13+34.13+......+328.13
A=13(3+34+.....+328)
=> A chia hết cho 13
Mình chỉ biết làm như thế thôi à bạn (nhưng nếu bạn thay số 52 thành 40 thì mình làm đc)
Mình không biết làm câu b nha...
KB với mình chứ?
Mọi người ơi giúp mình với. Mình đang cần gấp
Cho \(A=3+3^2+3^3+...+3^{100}\)
a. Số A là số nguyên tố hay hợp số? Vì sao?
b. Số A có phải là số chính phương không?
Mỗi phần tử của A đều chia hết cho 3
nên A chia hết cho 3 và lớn hơn 3 nên là hợp số
b, Các phần tử của A đều chia hết cho 9 ngoại trừ 3
=> A KHÔNG CHIA HẾT CHO 9. Vì A ko chia hết cho 9 mà chia hết cho 3
nên không là số chính phương
Cho A = 3 + 3 mũ 2 + ... + 3 mũ 30
a, Chứng minh A chia hết cho 13 và A chia hết cho 52
b, A có phải là số chính phương không? Vì sao?
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha