( 5555 mũ 2222 + 2222 mũ 5555) chia cho 7
( 55555 mũ 22222 + 22222 mũ 55555 ) chia cho 7
Chứng minh rằng 2222 mũ 5555 - 5555 mũ 2222 chia hết cho 7
ta có:
2222=7.318-4, do đó 2222=-4(mod7)
5555=7.793+4,do đó 5555 = 4(mod7)
=>2222^5555+5555^2222=(-4)^5555+4^2222(mod7)
mà (-4)^5555+4^2222=-4^2222(4^3333-1)=-4^2222[(4^3)^1111-1]=-4^2222(64^1111-1)
lại có:64=1(mod7) do đó 64^1111=1(mod7)
=>64^1111-1=1-1(mod7)
hay 64^1111-1 chia hết cho 7
vậy 2222^5555+5555^2222 chia hết cho 7(d9pcm)
liikke nhé bn!
tìm số dư trong phép chia sau
a,2222^55555+5555^2222/10 va /7
b,1961^1962+1963^1964+1965^1966+2/7
giải bằng số đồng dư
tìm số dư của phép chia 55555^22222+22222^55555 cho 7
22222 đồng dư với -4 (mod 7)
=> 2222255555 đồng dư với -455555 (mod 7)
55555 đồng dư với 4 (mod 7)
=> 5555522222 đồng dư với 422222(mod 7)
Vậy 2222255555+5555522222 đồng dư với -455555+455555 (mod 7)
đồng dư với 455555 (1-433333) (mod 7)
đồng dư với 455555 (1-(43)11111) (mod 7)
Có: 43=64 đồng dư với 1 (mod 7) => (43)11111 đồng dư với 1 (mod 7)
=> 2222255555+5555522222 đồng dư với -455555(+1-1)=0 (mod 7)
Vậy 2222255555+5555522222 chia hết cho 7.
Tìm dư: 5555522222 +2222255555 chia hết cho 7
22222 đồng dư với -4 (mod 7)
=> 2222255555 đồng dư với -455555 (mod 7)
55555 đồng dư với 4 (mod 7)
=> 5555522222 đồng dư với 422222(mod 7)
Vậy 2222255555+5555522222 đồng dư với -455555+455555 (mod 7)
đồng dư với 455555 (1-433333) (mod 7)
đồng dư với 455555 (1-(43)11111) (mod 7)
Có: 43=64 đồng dư với 1 (mod 7) => (43)11111 đồng dư với 1 (mod 7)
=> 2222255555+5555522222 đồng dư với -455555(+1-1)=0 (mod 7)
Vậy 2222255555+5555522222 chia hết cho 7.
Chứng minh rằng :
a, 62001 + 51002 chia hết cho 31.
b, 109345 - 1 chia hết cho 7.
c, 2 mũ 2 mũ 4n+1 + 3 chia hết cho 7 .(cái này là lũy thừa tầng nên mik ko pt đánh ntn nên các bn thông cảm hem...)
d, 22225555 + 55552222 chia hết cho 7.
e, 19611962 + 19631964 + 19651966 + 2 chia hết cho 7.
mấy bài trên làm theo đồng dư thức nha , ai làm đúng và đầy đủ sẽ cóa like nhé.))
d) Giải:
Ta có: \(\left\{{}\begin{matrix}2222\equiv-4\left(\text{mod }7\right)\\5555\equiv4\left(\text{mod }7\right)\end{matrix}\right.\)
\(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}\) \(+4^{2222}\)
\(\equiv-4+4=0\left(\text{mod }7\right)\)
Mà \(\left(-4\right)^{5555}+4^{2222}=\left(-4\right)^{2222}\left(4^{3333}-1\right)\) \(⋮4^3-1=63⋮7\)
Vậy \(2222^{5555}+5555^{2222}⋮7\)
Tìm số dư trong phép chia sau:
b) (5555522222+2222255555) :7
22222 đồng dư với -4 (mod 7)
=> 2222255555 đồng dư với -455555 (mod 7)
55555 đồng dư với 4 (mod 7)
=> 5555522222 đồng dư với 422222(mod 7)
Vậy 2222255555+5555522222 đồng dư với -455555+455555 (mod 7)
đồng dư với 455555 (1-433333) (mod 7)
đồng dư với 455555 (1-(43)11111) (mod 7)
Có: 43=64 đồng dư với 1 (mod 7) => (43)11111 đồng dư với 1 (mod 7)
=> 2222255555+5555522222 đồng dư với -455555(+1-1)=0 (mod 7)
Vậy 2222255555+5555522222 chia hết cho 7.
- A đồng dư thức, Võ Đông Anh Tuấn bạn chắc đúng ko???
(2222^5555 + 5555^2222) chia hết cho 7
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
CMR : 2222^5555 + 5555^2222 chia hết cho 7
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
CM: 5555^2222 + 2222^5555 chia hết cho 7