Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Duy
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết
Nguyễn Xuân Dũng
Xem chi tiết
Nguyễn Xuân Dũng
Xem chi tiết
NGUYEN TUOI
Xem chi tiết
Nguyễn Ngọc Anh Minh
18 tháng 8 2021 lúc 8:11

\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)

Ta có 

AB=AC (tg ABC cân)

AE=AC (Tg ACE là tg đều)

=> AB=AE => tam giác ABE cân tại A

\(\Rightarrow\widehat{ABE}=\widehat{AEB}=\frac{\left(180^o-\widehat{BAE}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)

Xét tg cân ABD ta có

\(\widehat{ABD}=\widehat{BAD}=\frac{\left(180^o-\widehat{ADB}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)

Suy ra từ B có 2 đoạn thẳng BE bà BD cùng tạo với AB 1 góc 15 độ => BD trùng BE nên B; D; E thẳng hàng

Khách vãng lai đã xóa
Nguyễn Thị Kiểm
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Pham trung thanh
Xem chi tiết
Nguyên Quang Trương
15 tháng 4 2019 lúc 9:44

a;   xet tam giac ABF VA TAM GIAC ACE CO;

AB=AE(gt)

FAB=EAC(DO CUNG PHU VOI GOC BAC)

AF=AC(gt)

tam giac ABE=tam giac ACF(C.G.C)

Nguyên Quang Trương
15 tháng 4 2019 lúc 10:41

b, 

Gọi giao của EC và AB là M
BF và EC là N
ta co : tam giac ABF= tam giac AEC(cmt)

Goc BFA=GocAEC

HAY goc B1=Goc E1

Xet tam giac AME co goc A =90

Goc M+GOC E1=90(tbg)

Ma B1 = Goc E1

Goc M+Goc B1=90

BN vuong goc EC

Trần Hoàng Minh
Xem chi tiết
Dịu Hương Mai
27 tháng 8 2022 lúc 15:55

loading...  loading...  

Minh tú Trần
Xem chi tiết
Minh tú Trần
21 tháng 7 2020 lúc 17:48

a) chứng minh tam giác ABI = tam giác BEC

Khách vãng lai đã xóa
Huỳnh Quang Sang
23 tháng 7 2020 lúc 20:30

a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)

Xét \(\Delta\)ABI và \(\Delta\)BEC có :

AI = BC(gt)

\(\widehat{IAB}=\widehat{EBC}\)(cmt)

AB = BE(tam giác ABE vuông cân tại B)

=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)

b) \(\Delta\)ABI  = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)

\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)

Gọi giao điểm của CE với AB là M

Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)

Do đó \(CE\perp BI\)

Gọi giao điểm của BF và AC là N

Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)

=> BF vuông góc với CI

c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy

–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M

Khách vãng lai đã xóa