So sánh A= 2008/2009+2009/2010+2010/2011+2011/2008 và 4
So sánh A và 4
So sánh A và B biết: A= \(\dfrac{2008+2008+2010}{2009+2010+2011}\) và B= \(\dfrac{2008}{2009}\)+ \(\dfrac{2009}{2010}\)+ \(\dfrac{2010}{2011}\)
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
so sánh A và B với A=2008/2009 +2009/2010 +2010/2011 và B= (2008+2009+2010) / (2009+2010+2011)
mình cũng có bài giống như này nhưng chưa làm được
Ta có: 2008/2009 > 2008/2009+2010+2011
2009/2010> 2009/2010+2011
2010/2011>2010>2010/2009+2010+2011
Suy ra: A>2008+2009+2010/2009+2010+2011
Vậy A >B
so sánh A và B với A=2008/2009 +2009/2010 +2010/2011 và B= 2008+2009+2010 / 2009+2010+2011
Tớ cũng có bài này nhưng chưa làm được
cau tra loi la 50 khong can biet lam the nao
Bài 2 : So sánh
A=2008/2009+2009+2010+2010+2011 và B=2008+20092+2010/2009+2010+2011
So sánh: 2008/2009+2009/2010+2010/2011+2011/2008 và 4
so sánh:
2008/2009+2009/2010+2010/20011+2011/2008 và 4
4 lớn hơn vì 2008/2009 + 2009/2010 + 2010/2011 + 2011/2008 = 4,000001489 > 4
Vậy 4 nhỏ hơn
so sánh 2008/2009 + 2009/2010 + 2010/2011+ 2011/2008 với 4
Bạn chỉ cần lấy : (2008/2009+2009/2010+2010/2011+2011/2008)-4=số dương
vậy (2008+...2008) > 4
giúp mình câu này với:
so sánh : A=2008/2009 + 2009/2010 + 2010/2011+2011/2012 và B=4
Ta có 2008/2009 < 1; 2009/2010 < 1; 2010/2011 < 1; 2011/2012 < 1
Nên : 2008/2009 + 2009/2010 + 2010/2011 + 2011/2012 < 1 + 1 + 1 + 1
Ta có 2008/2009 < 1; 2009/2010 < 1; 2010/2011 < 1; 2011/2012 < 1
Nên : 2008/2009 + 2009/2010 + 2010/2011 + 2011/2012 < 1 + 1 + 1 + 1
Hay A < 4
A < B
a) Chứng tỏ rằng: 1/41+1/42+1/43+...+1/80 > 7/12
b) So sánh: A=2008/2009+2009/2010+2010/2011 VÀ B=2008+2009+2010/2009+2010+2011
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)