Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Phong
Xem chi tiết
Võ Đông Anh Tuấn
4 tháng 7 2016 lúc 14:32

Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)

Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.

Hai Đang
4 tháng 7 2016 lúc 14:33

neu 1 trong 2 so chia het cho 3 thi h chia het cho 3

neu cả 2 so  ko chia het cho 3 => 1so chia 3 du 1 va 1 so chia 3 du 2 => h chung chia 3 du 2

Thảo Minh Donna
Xem chi tiết
Võ Đông Anh Tuấn
26 tháng 6 2016 lúc 19:44

Tích 2 số tự nhiên đó là a(a+1)

Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0

Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2

Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm

Quỳnh
Xem chi tiết
GV
10 tháng 8 2014 lúc 16:47

a)

Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)

Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.

b)

350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)

Phạm Việt Châu
Xem chi tiết
Lê Kim Ngân
25 tháng 3 2017 lúc 21:44

số chia hết cho 2,3 thì chia hết cho 6

ví dụ : 2 x 3 = 6

số chia hết cho 2 và 9 thì chia hết cho 18

ví dụ 9 x 8 = 72

Lê Kim Ngân
25 tháng 3 2017 lúc 21:48

ai thấy đúng thì bấm đúng cho mk nhá tks

tranngocthien
Xem chi tiết
Đào Đức Mạnh
10 tháng 8 2015 lúc 8:57

Tích 2 số tự nhiên đó là a(a+1)

Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0

Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2

Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm

Đẹp Trai Nhất Việt Nam
Xem chi tiết
Nguyễn Thái Sơn
5 tháng 1 2017 lúc 20:42

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

Nguyễn Thị Hoàng Ánh
8 tháng 10 2017 lúc 21:15

xl mk thấy tên bn ghê wa

Lê Đức Tuệ
4 tháng 9 2021 lúc 11:15
Thằng xl nghe tên mà ức chế vãi
Khách vãng lai đã xóa
Black Angel
Xem chi tiết
transformer
Xem chi tiết
Trần Nhật Quỳnh
24 tháng 3 2017 lúc 14:33

Ta thấy: các số vừa chia hết cho 2 và 3 thì chia hết cho 6

Ví dụ: 2 x 3 = 6. 6 chia hết cho 2, 3 thì nó chia hết cho 6

transformer
24 tháng 3 2017 lúc 14:47

còn 18 thì sao bn

DUONG VU BAO NgOC
Xem chi tiết
Đào Trọng Luân
25 tháng 6 2017 lúc 19:43

a,

Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:

a + a + 1 + a + 2 = 3a + 3 

Mà 3a \(⋮3;3⋮3\)

=> 3a + 3 \(⋮3\)

Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3

b, 

Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư

a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2 

Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2 

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2

c, 

Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:

a[a + 1] 

*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2

* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2

Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2

d, 

Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:

a[a+1][a+2]

* cm a[a+1][a+2] chia hết cho 2

** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

Vậy a[a+1][a+2] chia hết cho 2

* cm a[a+1][a+2] chia hết cho 3

Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2

** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

Vậy a[a+1][a+2] chia hết cho 3

Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3

e, 

2 + 22 + 23 + 24 + ... + 260 

= 2[1 + 2 + 22 + 23 + 24 + ... + 260\(⋮2\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]

= 14 + 24.14 +... + 256.14

= 7 . 2[1 + 24 + ... + 256\(⋮7\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 5.6 + 25.5.6 + ... + 255.5.6

= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 15.2 + 25.15.2 + ... + 255.15.2

= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)

Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15

g, 

102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]

               = 999.....9999 [2004 chữ số 9] 

Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]

=> 102005 - 1 chia hết cho 9

Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]

=> 102005 - 1 chia hết cho 3

Vậy 102005 - 1 chia hết cho 3 và 9

h, 

Ta có:

102005 + 2 = 102005 - 1 + 3

Mà 102005 - 1 chia hết cho 3 [chứng minh trên]

Lại có: 3 chia hết cho 3

=> 102005 + 2 chia hết cho 3

Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:

1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9

Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]

Không Tên
13 tháng 10 2018 lúc 19:14

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

Nếu:  a = 2k thì chia hết cho 2  Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm