Cho các số thục a,b,c,d thõa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh rằng \(\left(\frac{12a+3b+21c}{2b+3c+21d}\right)^3=\frac{a}{d}\)(với giả thiết các tỉ số trên đều có nghĩa)
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức đều có nghĩa).
a,\(\frac{4a-3b}{a}\)=\(\frac{4c-3d}{c}\)
b,\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\frac{3a^2+2b^2}{3c^2+2d^2}\)
Giúp mình với mình đang cần gấp
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
ta có : \(\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)
\(\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)
\(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)
\(\text{Chứng minh rằng ta có tỉ lệ thức \frac{a}{b}= \frac{c}{d} nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa )}\)\(\text{Chứng minh rằng ta có tỉ lệ thức }\)\(\frac{a}{b}=\frac{c}{d}\)\(\text{ nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa )}\)
\(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\text{MÌNH ĐANG CẦN GẤP LẮM GIẢI GIÚP MÌNH NHA }\)
Cho các số thực a,b,c,d khác 0 thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}.\)Chứng minh rằng
\(\frac{a^3+2b^3+3c^3}{b^3+2c^3+3d^3}=\left(\frac{a+2b+3c}{b+2c+3d}\right)^3=\frac{a}{d}\)
Cho tỉ lệ thức\(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh rằng ta có các tỉ lệ thức sau(giả thiết các tỉ lệ thức đều có nghĩa)
a)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b)\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2\right)+1}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
c) có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a^2}{^{c^2}}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
các câu còn lại bạn tự làm đi! HI.......
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức để có nghĩa)
a) \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0
Xem ở lick này nhé (mình gửi cho)
Học tốt!!!!!!!!!!!!!
@@ chị linh Link dài vậy giải lun phải hơn không
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)
\(\Rightarrow\frac{2a+3b}{2c-3d}=\frac{2c+3d}{2c-3b}\left(đpcm\right)\)
Chứng minh rằng ta có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa) :
a) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b) \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
Cho tỉ lệ thức a/b = c/d. Chứng minh \(\frac{2a+3b}{2c+3d}=\frac{a+b}{c+d}\)(Giả thiết các tỉ số đều có nghĩa)
Giúp mình nhé.
Cho các số a,b,c,x,y,z thõa mãn \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\)\(\frac{z}{4a-4b+c}\). CHỨNG MINH \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)( GIẢ THIẾT CÁC TỈ SỐ ĐỀU CÓ NGHĨA )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)( 1 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)( 2 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 )
\(\frac{x+2y-z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{9a}{x+2y-z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)