Cho a :b=b :c=c: d=k Cm:(a^2 + b^2 + c^2).(b^2 + c^2 + d^2) = (ab + bc +cd)^2
4) Cho a :b=b :c=c: d=k
Cm:(a^2 + b^2 + c^2).(b^2 + c^2 + d^2) = (ab + bc +cd)^2
Cho a:b=b:c=c.d=k
CM:(a^2+b^2+c^2).(b^2+c^2+d^2)=(ab+bc+cd)
Cho a:b=b:c=a.d=k
Cm:(a^2+b^2+c^2) (b^2+c^2+d^2)=(ab+bc+cd)^2
Cho 4 điểm A , B , C , D . Biết AB = 2 cm , BC = 2 cm , AC = 5 cm , CD = 1 cm , AD = 6 cm .
Chứng tỏ rằng A , B , C , D thẳng hàng
Cho (a-d)2=2(ab-bc+cd-ad)
Cm |a-b| <= |b-c|
Cho \(\frac{a}{b}=\frac{c}{d}\)và \(\left|a\right|#\left|b\right|;\:\left|k\right|#\left|d\right|\)và a, b, c, d # 0
Cm: \(\frac{a^2+ab}{a^2-b^2}=\frac{c^2+cd}{c^2-d^2}\)
Cho a/b = c/d. Chứng tỏ:
( a + b )^2 / ( c + d )^2 = ab/cd
Mình làm như vậy nè:
Ta có: a/b = c/d
=> ( a + b )^2 / ab = ( d + c )^2 / cd
=> ( a + b )^2 / ( c + d )^2 = ab/cd
Đúng k vậy các cậu ? Help me
Nhìn hơi rối nhé
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
cho a+b+c+d=4. cm: 1/ab +1/cd >=(a^2+b^2+c^2+d^2)/2