cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\). Trong đó \(a+b+c+d\) khác 0
tính giá trị của biểu thứ \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) trong đó a + b +c +d khác 0.tính giá trị biểu thức \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
dễ mà bạn k cho mình thì mình giải cho k đi ko thì bye
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)trong đó a+b+c+d khác 0. Tính giá trị biểu thức
A= \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)trong đó \(a+b+c+d\ne0\)
Tính giá trị của biểu thức \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{1}{2}.4=2\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) trong đó a+b+c+d\(\ne\)0
Tính giá trị của biểu thức \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{c+b}\)
cho các số dương a;b;c;d thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)khi đó giá trị của biểu thức A=\(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
Cho a/b=b/c=c/d=d/a và a+b+c+d khác 0. Tính giá trị của A= \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=>a=b=c=d=>\(a+b=\frac{1}{2}\left(a+b+c+d\right)\)
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-b+2b-c+2c-d+2d-a}{a+b}\)
\(=\frac{2\left(a+b+c+d\right)-\left(a+b+c+d\right)}{\frac{1}{2}\left(a+b+c+d\right)}=\frac{a+b+c+d}{\frac{1}{2}\left(a+b+c+d\right)}=\frac{1}{\frac{1}{2}}=2\)
vậy A=2
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(\frac{2a-a}{a+a}.4=\frac{a}{2a}.4=\frac{4a}{2a}=2\)
vậy A=2
cho các số dương a,b,c,d thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) khi đó giá trị của biểu thức \(A=\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\) là
Cho dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\). Tính giá trị biểu thức: \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Đặt điều kiện : a, b, c, d khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
Nếu \(a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\Rightarrow d+a=-\left(b+c\right)\Rightarrow M=-4}\)
Và nếu a + b + c + d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Ta có : \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}\Rightarrow a=b=c=d}\)
Khi đó \(M=4\)
Vậy \(\Rightarrow\orbr{\begin{cases}M=4\\M=-4\end{cases}}\)
bạn ơi hỏi cái, M ở đâu ra vậy.
Nếu a+b+c+d=0 thì ta có
\(\Rightarrow a+b=-\left(c+d\right)\)
\(b+c=-\left(d+a\right)\)
\(c+d=-\left(a+b\right)\)
\(d+a=-\left(b+c\right)\)
Thay vào biểu thức trên ta có:-1+-1+-1+-1=-4
Nếu a+b+c+d khác 0 ta có
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow2a+b+c+d=4a\Rightarrow a+b+c+d=3a\)
\(a+2b+c+d=4b\Rightarrow a+b+c+d=3b\)
\(a+b+2c+d=4c\Rightarrow a+b+c+d=3c\)
\(a+b+c+2d=4d\Rightarrow a+b+c+d=3d\)
\(\Rightarrow3a=3b=3c=3d\Leftrightarrow a=b=c=d\)
Thay vào biểu thức trên ta có 1+1+1+1=4
Vậy =-4 hoặc 4
cho các số nguyên dương a,b,c,d thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
khi đó giá trị của biểu thức \(A=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)