B= 1/4 + 1/16 + 1/36 + 1/64 + 1/100 + 1/44 + 1/296
chứng minh: 1/4 + 1/16 + 1/36 +1/64 + 1/100 + 1/44 + 1/196 <1/2
A = 1/4+1/16+1/36+1/64+1/100+1/44+1/196+1/256+1/324
Chứng minh A<1/2
(làm chi tiết giùm mình nha❤)
bạn giải dùm mình bài này nhé Tìm x biết: 2+2+22 +23+24+...+22014=2x. Ai giúp mình giải bài này với
chứng minh biểu thức sau ko phải số tự nhiên
1/4+1/16+1/36+1/64+1/100+1/44+1/196+1/256
giúp mình nhanh nha
1/4+1/16=1\20
1\20+1/36=1/56
1/56+1/64=1\120
1/120+1/100=1/220
1/220+1/44=1/264
1/264+1/196=1/460
1/460+1/256=1/716
suy ra:1/716 ko phải số TN
Ta có : \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{256}>0\)
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}+\frac{1}{256}\)
\(A< \frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\frac{1}{64}\)\(+\frac{1}{81}+\frac{1}{100}+\frac{1}{121}+\frac{1}{144}+\frac{1}{169}+\frac{1}{196}+\frac{1}{225}+\frac{1}{256}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{15\cdot16}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{15}-\frac{1}{16}\)
\(A< 1-\frac{1}{16}< 1\)
\(\Rightarrow0< A< 1\)
=> A ko là số tự nhiên
a) Cho A=1/4+1/16+1/36+1/64+1/100+1/144+1/196. Chứng minh rằng A < 1/2
b) Tìm số tự nhiên x, biết rằng: Khi chia x cho 45 thì được số dư là 44, còn khi chia x cho 15 thì được thương bằng số dư
CMR : 1/4 + 1/16 + 1/36 + 1/64 + 1/100 + 1/144 + ... + 1/10000 < 1/2
\(Đ\text{ặt }S=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)
\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(S=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2};\text{ }\frac{1}{3^2}< \frac{1}{2\cdot3};\text{ }...;\text{ }\frac{1}{50^2}< \frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)
\(\Rightarrow\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}\cdot2\)
\(\Rightarrow S< \frac{1}{2}\) (ĐPCM)
Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{100^2}\)
\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)
\(\Rightarrow4A< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(\Rightarrow4A=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow4A< 2-\frac{1}{50}< 2\)
\(\Rightarrow4A< 2\Rightarrow A< \frac{2}{4}=\frac{1}{2}\)
=>a<1/2
so sanh 1/4+1/16+1/36+1/64+1/100+1/144+1/196 va 1/2
chứng minh rằng a 1/4 +1/16+1/36+1/64+1/100+1/144 +1/196+......+1/10000 <1/2
CM:1/4+1/16+1/36+1/64+1/100+1/144+1/196+......+1/1000<1/2
Bạn tham khảo nhé
A=14 +116 +136 +164 +1100 +1144 +1196 =122 +142 +162 +182 +1102 +1122 +1142
2A=222 +242 +262 +282 +2102 +2122 +2142
2A<12 +22.4 +24.6 +26.8 +28.10 +210.12 +212.14
2A<12 +12 −14 +14 −16 +16 −18 +18 −110 +110 −112 +112 −114
2A<12 +12 −114
2A<1−114
2A<1314
A<1328 <1428 =12 ( đpcm )
Vậy A<12
Chúc bạn học tốt ~
Đặt \(A\)\(=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có: \(A< \frac{1}{2^2-1}+\frac{1}{4^2-1}+...+\frac{1}{100^2-1}\)
\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\)
\(A< \frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(A< \frac{1}{2}.1\)( VÌ \(1-\frac{1}{101}< 1\))
\(A< \frac{1}{2}\)
tinh tong
a=1/4+1/16+1/36+1/64+1/100+1/144+1/196