A= -1-1/2(1+2)-1/3(1+2+3)-...-1/101(1+2+3+....+101)
tính: -1-1/2(1+2)-1/3(1+2+3)-...-1/101(1+2+3+...+101)
D=-1-1:2*(1+2)-1:3*(1+2+3)-...-1:101*(1+2+3+...+101)
A = 1 . 2 + 2 . 3 + 3 . 4 + ......... + 98 . 99 / 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ........... + ( 1 + 2 + 3 + ...... + 98 )
B = ( 1 / 51 . 52 ) + 1 / 52 . 53 + ...... + 1 / 100 . 101 ) : ( 1 / 1 . 2 + 1 / 2 . 3 + ........ + 1 / 99 . 100 + 1 / 100 . 101
Tính
a) (x-1/2)+(x-1/4)+(x-1/8)+...+(x-1/512)
Tìm x
a) (x-1/1×2)+(x-1/2×3)+...+(x-1/100×101)
b) (x-1)+(x-2)+(x-3)+...+(x-101)=5050
c) x+1/2+1/3+1/4+...+1/100=3/2+4/3+5/4++...+101/100
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+....+\frac{100}{2^{101}}\)\(A-\frac{A}{2}=\left(1+\frac{3}{2^3}+....+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+.....+\frac{100}{2^{101}}\right)\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{1}{2^{101}}\)
\(\frac{A}{2}=\left(1-\left(\frac{1}{2}\right)^{101}\right).2-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{99}}-\frac{100}{2^{100}}\)
Tính
A=-1-1/2×(1+2)-1/3×(1+2+3)-...-1/101+(1+2+3+...+101)
Giải giúp mình nhé mai mình phải nộp bài rồi
tinh nhanh: B= -1 - 1/2.(1+2) - 1/3.(1+2+3) - 1/4.(1+2+3+4) - ..... - 1/101.(1+2+3+...+101)
bài 6 rút gọn
-1-1/2*(1+2)-1/3*(1+2+3)*...-1/101*(1+2+3+...+101)
Chứng minh rằng 1/1*2+1/1*2*3+1/1*2*3*4+...+1/1*2*3*4*...*101 < 1
(1/2!+1/3!+1/4!+...+1/101!)