Chứng minh rằng từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chọn được 3 số x y z là độ dài 3 cạnh một tam giác
chứng minh rằng 8 số nguyên dương tùy ý không lớn hơn 20 luôn chọn được 3 số x, y,z là độ dài ba cạnh của tam giác
Gọi 8 số nguyên dương tùy ý là \(a_1,a_2,a_3,....,a_8\)
với \(1\le a_1\le a_2\le a_3\le a_4\le......\le a_8\le20\)
Nhận thấy rằng với ba số nguyên dương a,b,c thỏa mãn \(a\ge b\ge c\) và \(b+c>a\) thì khi đó a,b,c là độ dài 3 cạnh tam giác.
Nếu trong các số \(a_1,a_2,a_3,a_4,.....a_8\) không chọn được 3 số nào là độ dài 3 cạnh của tam giác thì:
\(a_6\ge a_7+a_8\ge1+1=2\)
\(a_5\ge a_6+a_7=2+1=3\)
\(a_4\ge a_5+a_6=2+3=5\)
\(a_3\ge a_4+a_5=3+5=8\)
\(a_2\ge a_3+a_4=8+5=13\)
\(a_1\ge a_2+a_3=13+8=21\)(trái với giả thiết)
Vậy điều giả sử là sai.
=> điều cần chứng minh
sửa lại từ dòng 5 cách bạn zZz Phan Gia Huy zZz
\(a3\ge a1+a2\ge1+1=2\)
\(a4\ge a2+a3\ge1+2=3\)
\(a5\ge a3+a4\ge2+3=5\)
\(a6\ge a4+a5\ge3+5=8\)
\(a7\ge a5+a6\ge5+8=13\)
\(a8\ge a6+a7\ge13+8=21\)(trái với giả sử)
Vậy ...
@Boul đẹp trai_tán gái đổ 100%:thanks nhiều
Chứng minh rằng từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chon được 3 số x, y, z là độ dài 3 cạnh của một tam giác.
Chứng minh rằng từ 8 số nguyên dương tùy ý không lớn hơn 20 luôn chọn, luôn chọn được ba số x,y,z là độ dài ba cạnh của một tam giác
giúp mk vs
cmr từ 8 số nguyên dương tùy ý ko lớn hơn 20, luôn chọn được ba số x,y,z là độ dài 3 cạnh của 1 tam giác
cmr từ 8 số nguyên dương tuỳ ý không lớn hơn 20,luôn chọn được 3 số là độ dài 3 cạnh của 1 tam giác
Bài 1
a, Tính giá trị biểu thức: A= 1/2.(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/2015.2017)
b, Tính giá trị biểu thức:B= 2x^2-3x+5 với |x|=1/2
c, Tính giá trị biểu thức:C= 2x-2y+13x^3y^2(x-y)+15(y^2x-x^2y)+(2015/2016)^0 biết x-y=0
d, Tìm x,y biết (2x-1/6)^2 +|3y+12| bé hơn hoặc bằng 0
e, Tìm x,y,z biết: 3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=18
f, Tìm số nguyên x,y biết x-2xy+y-3=0
g, Cho đa thức f(x)= x^10-101x^9+101x^8-101x^7+...-101x+101. Tính f(100)
h, CMR từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chọn được ba số x,y,z là độ dài ba cạnh của một tam giác
cho a b c là độ dài 3 cạnh tam giác chứng minh có các số nguyên dương x y z sao cho a=x+y b=y+z c=z+x
Mọi người giúp mk với ạ :
Bài 1 : Cho các số thực dương x,y,z thỏa mãn x+y+z = 2019. Tìm giá trị nhỏ nhất của biểu thức P = 1/(x^2 +y^2 +z^2) +3/4xy + 3/4yz +3/4zx
Bài 2 : Tìm tất cả các bộ ba số nguyên tố (p;q;r) sao cho pqr = p+q+r+160
Bài 3 : Cho 8 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 210. Chứng minh rằng trong 8 đoạn thẳng đó luôn tìm đc 3 đoạn thẳng để ghép thành 1 tam giác.
Độ dài các cạnh của một tam giác là các số nguyên liên tiếp không nhỏ hơn 3 đơn vị độ dài. Chứng minh rằng đường cao hạ xuống cạnh có độ dài lớn thứ hai thì chia cạnh này thành hai phần có hiệu độ dài là 4.