tinh gia tri bieu thucb=x2 + 2xy2 - 3xy - 2 tai x = 2 va /y/ = 3
Tinh gia tri bieu thuc :B= x^2+2xy^2-3xy-2 tai x=2 va /y/=3 (giup minh voi)
|y|=3
Suy ra: y=3 hoặc y=-3
nếu x=2 và y=3 thì
x^2+2xy^2-3xy-2=2^2+2.2.3^2-3.2.3-2=4+36-18-2=20
Nếu x=2 và y=-3 thì
x^2+2xy^2-3xy-2=2^2+2.2.(-3)^2-3.2.(-3)-2=4+36-(-18)-2=56
B=x2+2xy2-3xy-2
|y|=y=3
Thay x và y vào ta có :
B=22+2.2.32-3.2.3-2
B=4+2.2.9-3.2.3-2
B=4+36-18-2
B=20
Tinh gia tri bieu thucb=2(x^3+y^3)-3(x^2+y^2)voix+y=1
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
tinh gia tri bieu thuc cua dai so x2y3 +xy tai x=1 va y=1/2
_ Tại \(x=1;y=\dfrac{1}{2}\) thì:
\(1^2\left(\dfrac{1}{2}\right)^3+1.\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{1}{2}=\dfrac{5}{8}\)
Vậy giá trị của b/t đại số = \(\dfrac{5}{8}.\)
thay x=1; y= 1/2 vào biểu thức x^2y^3+xy ta được
1^2 x (1/2)^3 + 1 x 1/2
= 1 x 1/8 + 1/2
=1/8 + 4/8
=5/8
vậy giá trị của biểu thức x^2y^3+xy tại x=1; y=1/2 là:5/8
Thay x=1 va y=\(\dfrac{1}{2}\) vào biểu thức x2y3+xy ta được:
12.\(\left(\dfrac{1}{2}\right)^2\)+1.\(\dfrac{1}{2}\)=1.\(\dfrac{1}{4}\) +1.\(\dfrac{1}{2}\)
=1.(\(\dfrac{1}{4}\)+\(\dfrac{1}{2}\))
=1.\(\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy giá trị của biểu thức đại số x2y3+xy tại x=1và y=\(\dfrac{1}{2}\) là \(\dfrac{3}{4}\)
Tinh
Xy^3+4xy^3-3xy^3
(-4/5ab^2c)×(-20a^4b^3c)
Bai 2.tinh gia tri cua bieu thuc a=14x^2+5xy-2010y^2 tai x=-1;y=-2
xy3+4xy3-3xy3
=5xy3-3xy3 = 2xy3
tươg tự
Bài 2 : Thay zô có j kó đâu ==
Cho bieu thuc A = \(^{x2+4x+3}\)
a Tinh gia tri bieu thuc tai x= \(\frac{-1}{2}\)
b Tinh gia tri x de bieu thuc A bang 0
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
cho bieu thuc p=(x+1)(x+√x)/√x-x-√x, voi x>0
a/ rut gon bieu thuc
b/ tim gia tri cua x de gia tri cua bieu thuc p bang 2
Bai 1 : Tinh gia tri cua bieu thuc sau tai x=6 y=15
a, 3(x+y) b, 2(2x+y) c, x/2 d, 2(y2-20) e, 3xy : 10 f, 5(x+y+1)
giup tui voi TT
a, 3(x+y)
Thay x=6,y=15 vào bt trên ta có:
3(6+15) = 3.21 =63
b, 2(2x+y)
Thay x=6, y=15 vào bt trên ta có:
2(2.6+15) = 2(12+15) = 2.27 = 54
c, \(\frac{x}{2}\)
Thay x=6 vào bt trên ta có:
6:2=3
các ý khác bạn lạm tương tự như thế này nhé
thuc hien phep tinh roi tinh gia tri bieu thuc
x(x2-y)-x2(x+y)+y(x2-x)
tai x=2012
y=1/5