Tìm các số tự nhiên a,b,c thỏa: a^2(b+c)+b^2(a+c)+c^2(a+b) là số nguyên tố
1)Tìm 3 số nguyên liên tiếp a,b,c sao cho a2 cộng b2 cộng c2 cũng là 1 số nguyên tố
2) Tìm 4 chữ số thỏa mãn a2 + b2=c2 + d2.CMR a+b+c+d là hợp số
3)Viết số 1998 thành tổng 3 số tự nhiên tùy ý.CMR tổng các lập phương của 3 số tự nhiên đó chia hết cho 6
3. 1998=a+b+c (a,b,c\(\in N\))
Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)
mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n
=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)
a) Tìm các số tự nhiên a, b, c thỏa mãn 1/a + 1/b + 1/c = 4/5
b) Tìm 3 số tự nhiên liên tiếp p, q, c sao cho p2 + q2 + r2 cũng là số nguyên tố.
Ai bik lm giúp mk nha, mk kick cho ^^
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
tìm a,b,c là số tự nhiên sao cho P=a^2(b+c)+b^2(a+c)+c^2(a+b) là 1 số nguyên tố
Ta có : \(P=a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)
Gỉa sử : \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)là 3 số lẻ \(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\)lần lượt bằng \(2x+1;2y+1;2z+1\left(x;y;z\in N\right)\)
\(\Rightarrow a+b+b+c+c+a=2\left(a+b+c\right)=2\left(x+y+z\right)+3⋮2\)( vô lí )
Suy ra tồn tại 1 số chẵn trong 3 số \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)
\(\Rightarrow x⋮2\Leftrightarrow x=2\)
Đưa bài toán về tìm số tự nhiên \(a,b,c\)sao cho \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)
\(\Leftrightarrow2abc+2=\left(a+b\right);\left(b+c\right);\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Tiếp tục sử dụng bất đẳng thức \(\left(a+b+c\right)\left(ab+ca+ca\right)\ge9abc\)
\(\Rightarrow2abc+2\ge8abc\Leftrightarrow abc\le\frac{1}{3}\)
\(\Rightarrow abc=0\)nên tồn tại 1 số 0 ( nếu tồn tại 2 số thì \(x=0\)nên loại )
Gỉa sử \(c=0\Rightarrow x=ab\left(a+b\right)=2\Leftrightarrow a=b=1\)
Vậy \(\left(a,b,c\right)=\left(1,1,0\right)\)và hoán vị thì x là số nguyên tố
Tìm các số tự nhiên a,b,c sao cho \(a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\) là số nguyên tố.
mk chưa học đến lớp 9
xin lỗi bn nha
Tìm các số tự nhiên a,b,c thỏa mãn a là số nguyên tố và \(a+1=2b^2\); \(a^2+1=2c^2\)
1.Cho 3 số tự nhiên a,b,c đôi một khác nhau thỏa mãn a+b+c=0
tính A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ac/(a^2+c^2-b^2)
2.Tìm 3 số nguyên tố liên tiếp a,b,c để a^2+b^2+c^2 nguyên tố
3.Cho x,y,z đôi một khác nhau
cmr: M-1/(x-y)^2+1/(y-z)^2+1/(z-x)^2 là binhg phuiwng 1 số hữu tỉ
4.Cho A=(x^2+x+2)/(x^3-1)
Tìm x nguyên để A nguyên
5.Tìm x,y thỏa mãn (X^2+1)(x^2+y^2)=4x^2y
Giúp mk nha các bạn
cho các số tự nhiên a, b, c, d, e, g thỏa mãn: a2 + b2 + c2 = d2 + e2 + g2. Hỏi (a + b+ c + d + e + g) là số nguyên tố hay hợp số
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6