Tính:
\(A=3-\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tính:\(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-.....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
\(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+....+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)(có 92 số 1)
\(=\frac{\frac{8}{9}+\frac{8}{10}+....+\frac{8}{100}}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}\)
\(=8:\frac{1}{5}=40\)
\(B\)\(=\)\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}....+\frac{1}{500}}\)
Tham khảo bài làm bn Đàm đi
Hok tốt
Tính :
\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tính N=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tử số:
\(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\)
= \(\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)\)
= \(\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}\)
= \(8\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
Mẫu số:
\(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\)
= \(\frac{1}{5\times9}+\frac{1}{5\times10}+\frac{1}{5\times11}+...+\frac{1}{5\times100}\)
= \(\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{8\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
Bỏ biểu thức \(\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)ở trên và ở dưới (vì biểu thức đó đều có ở trên và ở dưới nên phải gạch bỏ)
\(\Leftrightarrow\frac{8}{\frac{1}{5}}\)= \(8\div\frac{1}{5}=40\)
Vậy N = 40.
\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+\frac{1}{500}}=?\)
Tính : \(\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right)\) \(\div\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right)\)
Tính: \(S=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{90}{98}-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{495}+\frac{1}{500}}\)
Giúp mình nha! ^_^
Tử số sau 1/9 là 2/10.Tối nay mình thử làm xem
Quên mất, bảo tối hôm đó vào làm :)). May là sang nay có ng k ms vào xem. Sorry
S=\(\frac{92-\left(1-\frac{8}{9}\right)-\left(1-\frac{8}{10}\right)-..-\left(1-\frac{8}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}=\frac{92-92+\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}\)
=\(\frac{8\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8}{\frac{1}{5}}=\frac{8.5}{1}=40\)
Vậy S=40
A=\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\)
B=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
E= 92 - \(\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-..........-\frac{92}{100}\) ,F=\(\frac{1}{45}-\frac{1}{50}-\frac{1}{55}-........-\frac{1}{500}\)
Tính \(\frac{E}{F}\)
\(G=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
\(H=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
tính tỉ số G và H