Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh
Xem chi tiết
Nguyễn Ngọc Vy
Xem chi tiết
Nguyễn thị Ngọc Ánh
Xem chi tiết
Nguyễn Thị Mát
30 tháng 12 2019 lúc 15:21

a ) \(ĐKXĐ:x\ge0;x\ne1\)

\(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)

\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)

Khách vãng lai đã xóa
Nguyễn Thị Mát
30 tháng 12 2019 lúc 15:35

B ) Ta có :

 \(Q=P-\sqrt{x}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)

Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)

\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)

Ta có bảng sau :

\(\sqrt{x}-1\)3-31-1
\(\sqrt{x}\)4-220
\(x\)16(t/m) 4(t/m)0(t/m)

Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)


 

Khách vãng lai đã xóa
ngo tinh
Xem chi tiết
Trần mạnh tới
Xem chi tiết
Trần Anh Tuấn
Xem chi tiết
Nguyễn Phạm Như Quỳnh
Xem chi tiết
Nguyễn Huy Tú
26 tháng 12 2020 lúc 22:35

\(P=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)

\(=\left[\frac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}-\frac{\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)^2}{x-1}\right]\)

Phương trình tương đương : 

\(=\frac{2x^2-2x}{x^2-x}:\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=2:\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\frac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Khách vãng lai đã xóa
Nguyễn Khoa Nguyên
Xem chi tiết
Nguyễn Văn Tuấn Anh
9 tháng 12 2019 lúc 12:48

\(A=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)\left(1-\frac{1}{\sqrt{x}}\right)\)

\(=\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}.\frac{-\left(1-\sqrt{x}\right)}{\sqrt{x}}\)

\(=\frac{-2}{1+\sqrt{x}}\)

b) 

 Để \(A\in Z\)

\(\Rightarrow1+\sqrt{x}\inƯ\left(-2\right)\)

\(\Rightarrow\sqrt{x}\in\left\{0;-2;1;-3\right\}\)mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{1;0\right\}\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Khách vãng lai đã xóa
Nguyễn Thị Hà My
Xem chi tiết
Nguyễn Huy Tú
24 tháng 5 2021 lúc 11:44

a, \(M=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\)

\(=\frac{x-6\sqrt{x}+\sqrt{x}+6+17\sqrt{x}+30}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{12\sqrt{x}+x+36}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-6}\)

b, Ta có : \(L=N.M\Rightarrow L=\frac{\sqrt{x}+6}{\sqrt{x}-6}.\frac{24}{\sqrt{x}+6}=\frac{24}{\sqrt{x}+6}\)

Vì \(\sqrt{x}+6\ge6\)

\(\Rightarrow\frac{24}{\sqrt{x}+6}\le\frac{24}{6}=4\)

Dấu ''='' xảy ra khi \(\sqrt{x}+6=6\Leftrightarrow x=0\)

Vậy GTLN L là 4 khi x = 0

Khách vãng lai đã xóa