Cho \(\Delta\)ABC có các góc B, C nhọn. Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai H. Một đường thẳng d bất kì qua A lần lượt cắt hai đường tròn nói trên tại M,N. Xác định vị trí của d để MN có độ dài lớn nhất
Cho tam giác ABC, góc B và góc C nhọn.Các đường tròn đường kính AB, AC cắt nhau tại D. Một đường thẳng qua A cắt đường tròn đường kính AB,AC lần lượt tại E,F
Xác định vị trí A để EF lớn nhất
Cho nửa đường tròn tâm (O) có đường kính AB.lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung AB ( M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM,BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại điểm thứ hai N
a) chứng minh: ACMD nội tiếp
b) chứng minh: CA.CB= CH.CD
c) Chứng minh; ba điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DN
d) khi M di chuyển trên cung KB. chứng minh đường thẳng MN luôn đi qua 1 điểm cố định.
Cho nửa đường tròn tâm (O) có đường kính AB.lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung AB ( M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM,BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại điểm thứ hai N
a) chứng minh: ACMD nội tiếp
b) chứng minh: CA.CB= CH.CD
c) Chứng minh; ba điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DN
d) khi M di chuyển trên cung KB. chứng minh đường thẳng MN luôn đi qua 1 điểm cố định.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Hai đường cao AK và CI của tam giác ABC cắt nhau tại H (K thuộc BC, I thuộc AB).
a) Chứng minh rằng: góc BAK bằng góc BCI.
b) Gọi M là điểm bất kì trên cung nhỏ BC. Các điểm N, P lần lượt là điểm đối xứng với M qua AB, AC. CMR: Tứ giác AHCP nội tiếp đường tròn.
c) Tìm vị trí điểm M để độ dài đoạn thẳng NP lớn nhất.
Cho ba điểm A,B,C trên một đường thẳng theo thứ tự ấy và đường thẳng (d) vuông góc với AC tại A. Vẽ đường tròn đường kính BC và trên đó lấy điểm M bất kì .Tia CM cắt đường thẳng d tại D, tia AM cắt đường tròn tại điểm thứ hai N, tia DB cắt đường tròn tại điểm thứ 2 P
a)chứng minh CM * CD không phụ thuộc vào vị trí của M
b) Tứ giác APND là hình gì ? Vì sao
Cho hai đường tròn tâm O và tâm O' cắt nhau tại A và B cố định. Vẽ AC và AD là đường kính của đường tròn tâm O và O'. Một đường thẳng d thay đổi luôn đi qua A cắt đường tròn tâm O và đường tròn tâm O'lần lượt tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:
a) Các tam giác KAB và IBC là những tam giác đêu.
b) Tứ giác KIBC nội tiếp.
Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:
a) Tứ giác FNEM nội tiêp.
b) Tứ giác CDFE nội tiếp.
Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.
a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó
b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn
Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm
Cho đường tròn tâm O, bán kính R và một dây cung BC cố định (BC không đi qua O). A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ hai lần lượt là Q và P.
a) CMR: bốn điểm B, F, E, C cùng thuộc một đường tròn.
b) CMR: các đường PQ, EF song song với nhau.
c) Gọi I là trung điểm của BC. CMR: góc FDE bằng hai lần góc ABE và góc FDE góc FIE.
d) Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất.
bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????
3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)
Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE
4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)
Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE
⇒DKE = DEK => ΔDEK cân tại D => DE = DK
Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC