phân tích đa thức thành nhân tử 2(x-z)+xy-yz
phân tích đa thức thành nhân tử (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+zx)^2
phân tích đa thức thành nhân tử 2(xy+yz+zx)-x^2-y^2-z^2
\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)
\(2xy+2yz+2zx-x^2-y^2-z^2\)
\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)
\(-\left(x+y+z\right)^2\)
Phân tích đa thức thành nhân tử
A ) xy(z+y)+yz(y+z)+zx(z+x)
B )xy(x+y)-yz(y+z)-zx(z-x)
A ) xy(z+y)+yz(y+z)+zx(z+x)
=y.[x(z+y)+z(y+z)]+zx(z+x)
=y.(xz+xy+zy+z2)+zx(z+x)
=y.(xz+z2+xy+zy)+zx(z+x)
=y.[z.(z+x)+y.(z+x)]+zx(z+x)
=y.(z+x)(z+y)+zx(z+x)
=(z+x)[y(z+y)+zx]
=(z+x)(yz+y2+zx)
B )xy(x+y)-yz(y+z)-zx(z-x)
=y.[x(x+y)-z(y+z)]-zx(z-x)
=y.(x2+xy-zy-z2)-zx(z-x)
=y.(x2-z2+xy-zy)-zx(z-x)
=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)
=y.(x-z)(x+z+y)+zx(x-z)
=(x-z)[y(x+z+y)+zx]
=(x-z)(yx+yz+y2+zx)
=(x-z)(yx+zx+yz+y2)
=(x-z)[x.(y+z)+y.(y+z)]
=(x-z)(y+z)(x+y)
b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
phân tích đa thức thành nhân tử:
xy(x+y)-yz(y+z)+xz(x-z)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
.
.
.
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
phân tích đa thức thành nhân tử:
xy( x-y ) + yz( y-z ) + xz( z-x )
\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)
\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)
\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)
\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)
\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)
\(=\left(xy-yz\right)\left(x-y+z-x\right)\)
\(=\left(xy-yz\right)\left(-y+z\right)\)
mơn bn nha ^^
nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v
kq là: ( z - y )( x - z)( y - x )
[ вơ đắйǥ ] вé เςë ⁀ᶜᵘᵗᵉ
Ukm cảm ơn nhé quên mất đoạn cuối vẫn phân tích đc nữa
Phân tích đa thức thành nhân tử:
(x+y+z)^2(x^2+y^2+z^2)^2+(xy+yz+zx)^2
Phân tích đa thức sau thành nhân tử xy(x+y)-yz(y+z)-zx(z-x)
xy(x+y)-yz(y+z)-zx(z-x)
=y.[x.(x+y)-z.(y+z)]-zx.(z-x)
=y.(x2+xy-zy-z2)-zx.(z-x)
=y.[(x-z)(x+z)-y.(z-x)]-zx.(z-x)
=y.[-(z-x)(x+z)-y.(z-x)]-zx.(z-x)
=y.(z-x)(-x-z-y)-zx.(z-x)
=(z-x)(-xy-zy-y2-zx)
=(z-x)[-x.(y+z)-y.(y+z)]
=(z-x)(y+z)(-x-y)
=-(z-x)(y+z)(x+y)
Phân tích đa thức thành nhân tử:
xy(x-y)-xz(x+z)-yz(2x-y+z)