Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh châu trần
Xem chi tiết
Thi Bùi
Xem chi tiết
Hoàng Như Quỳnh
11 tháng 7 2021 lúc 8:50

\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)

\(2xy+2yz+2zx-x^2-y^2-z^2\)

\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)

\(-\left(x+y+z\right)^2\)

Khách vãng lai đã xóa
lộc Nguyễn
Xem chi tiết
Minh Triều
22 tháng 7 2015 lúc 8:37

A ) xy(z+y)+yz(y+z)+zx(z+x)

=y.[x(z+y)+z(y+z)]+zx(z+x)

=y.(xz+xy+zy+z2)+zx(z+x)

=y.(xz+z2+xy+zy)+zx(z+x)

=y.[z.(z+x)+y.(z+x)]+zx(z+x)

=y.(z+x)(z+y)+zx(z+x)

=(z+x)[y(z+y)+zx]

=(z+x)(yz+y2+zx)

B )xy(x+y)-yz(y+z)-zx(z-x)

=y.[x(x+y)-z(y+z)]-zx(z-x)

=y.(x2+xy-zy-z2)-zx(z-x)

=y.(x2-z2+xy-zy)-zx(z-x)

=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)

=y.(x-z)(x+z+y)+zx(x-z)

=(x-z)[y(x+z+y)+zx]

=(x-z)(yx+yz+y2+zx)

=(x-z)(yx+zx+yz+y2)

=(x-z)[x.(y+z)+y.(y+z)]

=(x-z)(y+z)(x+y)

 

Long Trần
30 tháng 6 2021 lúc 9:52

b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)

kiss you
Xem chi tiết
ma tốc độ
8 tháng 12 2015 lúc 16:43

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Huỳnh Kim Bích Ngọc
Xem chi tiết
Ben 10
14 tháng 8 2017 lúc 15:07

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

.

.

.

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Xem chi tiết
Lê Tài Bảo Châu
25 tháng 7 2019 lúc 17:06

\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)

\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)

\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)

\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)

\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)

\(=\left(xy-yz\right)\left(x-y+z-x\right)\)

\(=\left(xy-yz\right)\left(-y+z\right)\)

mơn bn nha ^^

nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v

kq là: ( z - y )( x - z)( y - x )

Lê Tài Bảo Châu
28 tháng 7 2019 lúc 21:07

[ вơ đắйǥ ] вé เςë ⁀ᶜᵘᵗᵉ

Ukm cảm ơn nhé quên mất đoạn cuối vẫn phân tích đc nữa

no name
Xem chi tiết
Huy Dang Quang
Xem chi tiết
Minh Triều
19 tháng 7 2015 lúc 15:44

 

xy(x+y)-yz(y+z)-zx(z-x)

=y.[x.(x+y)-z.(y+z)]-zx.(z-x)

=y.(x2+xy-zy-z2)-zx.(z-x)

=y.[(x-z)(x+z)-y.(z-x)]-zx.(z-x)

=y.[-(z-x)(x+z)-y.(z-x)]-zx.(z-x)

=y.(z-x)(-x-z-y)-zx.(z-x)

=(z-x)(-xy-zy-y2-zx)

=(z-x)[-x.(y+z)-y.(y+z)]

=(z-x)(y+z)(-x-y)

=-(z-x)(y+z)(x+y)

 

Nguyễn Trọng Kiên
Xem chi tiết