CMR: 1/2!+2/3!+3/4+...+2003/2004! < 1
Cho A= 1-3+3^2-3^3+...-3^2003+3^2004
a, CMR 4A-1 là lũy thừa của 3
b, CMR A là lũ thừa của 2 vs A= 4+2^3+2^4+2^5+...+2^2003+2^2004
Giải giúp mình nha...~~~!!!!!
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
P=1/2003+1/2004-1/2004 - 2/2002+2/2003-2/2004
5/2003+5/2004-5/2005 3/2002+3/2003-3/2004
CHO A= 1 - 3 + 3^2 - 3^3 + ............................... - 3^2003 + 3^2004
CMR 4A - 1 LÀ LŨY THỪA CỦA 3
bạn vào cái trang mình đưa bạn ấy câu hỏi trước á
Ta có:A=1-3+32-33+........-32003+22004
3A=3-32+33-34+..........+32003-32004+32005
3A+A=4A=1+32005
4A-1=32005
Vậy 4A-1 là lũy thừa của 3(đpcm)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a) 1 - 2 - 3 + 4 +5 - 6 - 7 + ..... + 2001 - 2002 -2003 + 2004
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 2001 + 2002 - 2003 - 2004
a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)
\(=0+0+...+0=0\)
b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right)\cdot501=\left(-2004\right)\)
Tìm A =(2004+2003/2+2002/3+...+1/2004) : ( 1/2+1/3+1/4+1/5+...+1/2005)
Đặt B = 2004+2003/2+2002/3+...+1/2004 B có 2004 phân số tách số 2004 = 1+1+1+...+1(2004 số 1) ghép 2004 số 1 vào từng nhóm như sau: B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1 B = 2005/2+2005/3+......+2005/2004+2005/2005 B = 2005x(1/2+1/3+....+1/2004+1/2005) Vậy A = 2005
Tìm A =(2004+2003/2+2002/3+...+1/2004) : ( 1/2+1/3+1/4+1/5+...+1/2005)
Đặt B = 2004+2003/2+2002/3+...+1/2004
B có 2004 phân số
tách số 2004 = 1+1+1+...+1(2004 số 1)
ghép 2004 số 1 vào từng nhóm như sau:
B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1
B = 2005/2+2005/3+......+2005/2004+2005/2005
B = 2005x(1/2+1/3+....+1/2004+1/2005)
Vậy A = 2005
1/2*2/3*3/4*4/5*.......*2002/2003*2003/2004
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2002}{2003}.\frac{2003}{2004}\)
Ta có : \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2.3.4.....2002.2003}{2.3.4.5....2003.2004}\)
\(=\frac{1}{2004}\)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2003}{2\cdot3\cdot4\cdot...\cdot2004}\)
\(=\frac{1}{2004}\)
[(1/2)+(1/3)+(1/4)+(1/5)+...+(1/2005)]/[(2004/1)+(2003/2)+(2002/3)+...+(1/2004)]
ta có \(2004+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{2003}{2}\right)+\left(1+\frac{2002}{3}\right)...\left(1+\frac{1}{2004}\right)+1\)
\(=\frac{2005}{2}+\frac{2005}{3}+...+\frac{2005}{2004}+\frac{2005}{2005}\)
\(=2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2005}}{\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}}{2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)}\)
\(=\frac{1}{2005}\)