Cho A = | 1 - 2x | + | 1 - 3x|
a) Tìm x để A = \(\frac{2}{5}\)
b) Tìm GTNN của A
Cho A= \(\frac{x}{x+1}+\frac{2x}{x^2-1}-\frac{1}{1-x}\)
a. tìm ĐKXĐ và rút gọn A
b. Tìm x để A=1/2
c. tìm giá trị nguyên của x để A có GTNN
Cho A= \(\frac{x}{x+1}+\frac{2x}{x^2-1}-\frac{1}{1-x}\)
a. tìm ĐKXĐ và rút gọn A
b. Tìm x để A=1/2
c. tìm giá trị nguyên của x để A có GTNN
1) giải phương trình :
\(\left|x^2-x+2\right|-3x-7=0\)
2) Tìm x \(\varepsilonℤ\)để A \(\varepsilonℤ\)biết A= \(\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right):\frac{x^2}{2x^2+x}\)
3) Cho 3 số a,b,c thỏa : \(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\)
Tìm gtnn của B= \(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
4) Cho phương trình \(\left(2x-3\right)^2=5\).Tính giá trị của A= \(\frac{3x^2}{x^4-9x^2+1}\)
cho A= 3x^2+5/x^2+1
a) tìm x nguyên để A nguyên
b) tìm GTNN của A
a) \(A=\frac{3x^2+5}{x^2+1}=\frac{3\left(x^2+1\right)+2}{x^2+1}=3+\frac{2}{x^2+1}\)
để A nguyên =>\(x^2+1\inƯ\left(2\right)\)
\(\Leftrightarrow x^2\in\left\{0;1\right\}\)
\(\Leftrightarrow x\in\left\{0;\pm1\right\}\)
Để A nguyên thì \(3x^2+5⋮x^2+1\)
\(\Rightarrow3\left(x^2+1\right)+2⋮x^2+1\)
\(\Rightarrow2⋮x^2+1\)
\(\Rightarrow x^2+1\in\left\{1;2\right\}\Rightarrow x=0;x=1;x=-1\)
a) \(A=\frac{3x^2+5}{x^2+1}=\frac{3x^2+3+2}{x^2+1}=\frac{3\left(x^2+1\right)+2}{x^2+1}=3+\frac{2}{x^2+1}\)
A nguyên
\(\Leftrightarrow\frac{2}{x^2+1}\)nguyên
<=> x2 + 1 là ước của 2
Ư(2) = { 1 ; 2 ; -1 ;-2}
Bảng tìm x
x2 + 1 | 1 | 2 | -1 | -2 |
x | 0 | 1 | ko có giá trị | không có giá trị |
Vậy với x = { 0 ; 1 } thì A nguyên .
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
Cho biểu thức: A=\(\frac{x+1}{3x-x}:\left(\frac{3+x}{3-x}-\frac{3-x}{3+x}-\frac{12x^2}{x^2-9}\right)\)
a/Rút gọn A
b/Tính A khi x thỏa mãn \(\left|2x-1\right|=5\)
c/Tìm x để A>0 và tìm x để A<0
d/Tìm GTNN của biểu thức \(M=\frac{1}{A}.\left(x+3\right)-12x+5\)
1. Tính:a) A=1253.24; b) B=\(\frac{1}{49^4}\).77; c) C=\(\frac{27^3+9^5}{81^3+3^{11}}\); d) D=\(\frac{\frac{4}{9}+\frac{28}{15}-\frac{12}{4}}{\frac{5}{9}+\frac{35}{15}-\frac{15}{4}}\)
2. a) Tìm GTNN của A= (2x-3)2-7; b) Tìm GTLN của 3- giá trị tuyệt đối của 3x-2
3. Tìm sốx nguyên để các số sau là số nguyên: a)A= 2+\(\frac{3}{x+1}\);b) B=\(\frac{3x-1}{x-1}\)
Cho A = \(\frac{x-1}{3x}\)
B = (\(\frac{x+1}{2x+2}\)+ \(\frac{3x-1}{x^2-1}\)-\(\frac{x+3}{2x+2}\) ) : \(\frac{3}{x+1}\)
a, Tính A khi x t/m x2 - 2x = 0
b, Rút gọn B
c, Tìm x để \(\frac{B}{A}\) đạt gtnn
Tính
a) (3√20-2√80+2/3√45-√5):√5
B) [(2+√5)/(2-√5)-(2-√5)/(2+√5)].(5-√5)/(1-√5)
Tìm x để A đạt gtnn
A=(3x+1)/(x²-2x+1)=(3x+1)/(x-1)²
\((3\sqrt{20}-2\sqrt{80}+\frac{2}{3}\sqrt{45}-\sqrt{5}):\sqrt{5}\)
\(=\left(3\sqrt{2^2.5}-2\sqrt{4^2.5}+\frac{2}{3}\sqrt{3^2.5}-\sqrt{5}\right):\sqrt{5}\)
\(=\left(3.2\sqrt{5}-2.4\sqrt{5}+\frac{2}{3}.3\sqrt{5}\right):\sqrt{5}\)
\(=\left(6\sqrt{5}-8\sqrt{5}+2\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)
\(=-\sqrt{5}:\sqrt{5}=-1\)
\(\left(\frac{2+\sqrt{5}}{2-\sqrt{5}}-\frac{2-\sqrt{5}}{2+\sqrt{5}}\right).\frac{5-\sqrt{5}}{1-\sqrt{5}}\)
\(=\left(\frac{\left(2+\sqrt{5}\right)^2}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}-\frac{\left(2-\sqrt{5}\right)^2}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\right).\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\)
\(=\left(\frac{4+4\sqrt{5}+5-\left(4-4\sqrt{5}+5\right)}{4-5}\right).\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\)
\(=\frac{9+4\sqrt{5}-9+4\sqrt{5}}{-1}.\left(-\sqrt{5}\right)\)
\(-8\sqrt{5}.\left(-\sqrt{5}\right)=40\)
Câu này để t nghĩ xem nào :v