Cho p1>p2 là hai số nguyên tố lẻ liên tiếp. C/m (p1+p2) : 2 là hợp số
cho p1,p2 là 2 số nguyên tố lẻ liên tiếp .CMR số (p1+p2):2 là hợp số
Vì p1; p2 là 2 số nguyên tố lẻ liên tiếp (p1< p2) nên p1 + 2 = p2 (1)
Thay (1) vào biểu thức (p1 + p2) /2 ta có:
(p1 + p2) /2
= (p1 + p1 + 2) /2
= (2p1 + 2) /2
= 2(p1 + 1) /2
= p1 + 1
Vì p1 là số lẻ nên p1 + 1 là số chẵn
Mà chỉ có số 2 là số nguyên tố chẵn duy nhất
=> p1 + 1 hay (p1 + p2) /2 là hợp số
Cho P1 và P2 là 2 số nguyên tố lẻ liên tiếp (P1 > P2)
Chứng minh rằng P1 + P2 chia 2 là hợp số
Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.
Hoặc:
p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)
Vậy (p1+p2)/2 là hợp số
ta có :
số chia hết cho 2 phải là số chẵn
số nào chia cho 2 cũng có thương là số chẵn ( khác 2 )
=> (P1 + P2 ) : 2 = SỐ CHĂN CHIA HẾT 2 => SỐ ĐÓ CÓ TRÊN 2 ƯỚC
=> ĐPCM
Vì p1 và p2 là 2 số nguyên tố lẻ liên tiếp => p1+p2 > 3 +5 = 8 và p1 + p2 chia hết cho 2
=>( p1+p2) :2 > 4 và p1+p2) :2 chia hết cho 2
=>( p1+p2) :2 là hợp số
=> đpcm
cho 2 số nguyên tố liên tiếp p1 và p2 biet p1 lon hon p2 . Chứng minh p1+p2/2 là hợp số (p1,p2 lớn hơn 2)
cho P1;P2 là 2 số nguyên tố lẻ liên tiếp
CMR: \(\frac{P1+P2}{2}\)là hợp số
< = > Nếu P1 chia 4 dư 1 thì P2 chia 4 dư 3
< = > Nếu P1 chia 4 dư 3 thì P2 chia 4 dư 1
< = > P1 + P2 chia hết cho 4
< => (P1 + P2) / 2 chia hết cho 2
< = > Là hợp số
=> ĐPCM
Vì lẻ + lẻ = chẵn
nên P1 + P2 : 2
mà số nguyên tố lẻ bắt đầu từ 3
mà ( 3 + 5 ) : 2 = 4
Vậy ( P1 + P2 ) : 2 là hợp số
Cho \(P1>P2\) là 2 số nguyên tố lẻ liên tiếp
\(CMR:\)\(\left(P1+P2\right)\div2\)là hợp số
Tham khảo : Cho p1; p2 là 2 số nguyên tố lẻ liên tiếp (p1< p2). Chứng minh (p1 + p2) /2 là hợp số? | Yahoo Hỏi & Đáp
Giả sử \(\frac{P1+P2}{2}\) là số nguyên tố
Khi đó : \(P1+P2=2d\) ( với d là số nguyên tố )
Vì P1,P2 là 2 số nguyên tố liên tiếp và \(P1>P2\)
\(\Rightarrow P1>d>P2\)
Do đó : giữa P1 và P2 còn 1 số nguyên tố nữa ( mâu thuẫn vs đề ra )
Vậy \(\frac{P1+P2}{2}\) là hợp số.
Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
p1=2
p2=3
p3=5
p4=7
p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố
đúng thì tk nha
Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4) (1)
Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số
Suy ra chúgn lần lượt là.........(1)
mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa
cho p1>p2 là hai số nguyên tố lẻ liên tiếp.Chứng tỏ rằng (p1+p2 )/2 là hợp số
Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.
Hoặc:
p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)
Vậy (p1+p2)/2 là hợp số
cho số M=2016+p1.p2.p2......pn(với p1,p2,p2,......,pn là n số nguyên tố đầu tiên n>2012)..Hỏi M có là SNT ko
Cho số tự nhiên n lớn hơn hoặc bằng 2. gọi p1, p2, ... ,pn là những số nguyên tố sao cho pn nhỏ hơn hoặc bằng n + 1. đặt A = p1 . p2 . ... . pn. Chứng minh rằng trong dãy số các số nguyên tố liên tiếp A + 2, A +3, ... , A + (n + 1) không chứa 1 số nguyên tố nào
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.